Chapter

02

Atomic Structure

Practice Section-01

- **Q.1** If S_1 be the specific charge (e/m) of cathode rays and S_2 be that of positive rays, then which is true?
 - (1) $S_1 = S_2$
- (2) $S_1 < S_2$
- (3) $S_1 > S_2$
- (4) Either of these
- Q.2 An increasing order (lowest first) for the values of e/m for electron (e), proton (p), neutron (n) and alpha (α) particle is:
 - (1) e, p, n, α
- (2) n, α , p, e
- (3) n, p, e, α
- (4) n, p, α , e

- Q.3 Select iso electronic set :-
 - (a) Na⁺, H₃O⁺, NH₄⁺
- (b) CO_3^{-2} , NO_3^- , HCO_3^- (c) P^{-3} , HCI, C_2H_6 , PH_3
 - (3) a, b, c, d
- (d) N^{-3} , O^{-2} , F (4) a, b, c
- **Q.4** The ratio of specific charge of a proton and an α -particle is :-
 - (1) 2 : 1

(1) a, b, d

(2)1:2

(2) b, c, d

- (3)1:4
- (4)1:1

- **Q.5** An isotone of $_{32}Ge^{76}$ is :-
 - (i) ₃₂Ge⁷⁷
- (ii) ₃₃As⁷⁷
- (iii) ₃₄Se⁷⁷
- (iv) 34Se⁷⁸

- (1) (ii) & (iii)
- (2) (i) & (ii)
- (3) (ii) & (iv)
- (4) (ii) & (iii) & (iv)

- **Q.6** $^{13}_{6}$ C and $^{12}_{6}$ C differ from each in respect of number of
 - (1) electrons
- (2) protons
- (3) neutrons
- (4) none of these
- Q.7 Atomic weight of Ne is 20.2. Ne is mixture of Ne²⁰ and Ne²², Relative abundance of heavier isotope is :-
 - (1)90

- (2)20
- (3)40
- (4) 10
- Q.8 A strong argument for the particle nature of cathode rays is that they:
 - (1) Produce fluorescence (2) Get deflected by electric and magnetic fields
 - (3) Travel through vacuum

(4) Cast shadow

- **Q.9** ¹⁸O isotope of oxygen will have
 - (1) 18 protons

(2) 9 protons and 9 neutrons

(3) 8 neutrons and 10 protons

(4) 10 neutrons and 18 protons.

- Q.10 Nuclides
 - (1) have same number of protons
- (2) have specific atomic numbers
- (3) have specific atomic and mass numbers
- (4) are isotopes.

>>>>>

Practice Section-02

Q.1	If the radii of first orbits order will be:	s of H, He ⁺ , Li ⁺² and Be ⁺³ a	re r_1 , r_2 , r_3 and r_4 respective	vely, then their correct decreasing
	(1) $r_1 > r_2 > r_3 > r_4$	(2) $r_3 < r_2 > r_4 < r_1$	(3) $r_1 < r_2 < r_3 > r_4$	(4) Radius of all are equal
Q.2	An electron in an atom	n jumps in such a way th	at its kinetic energy chai	nges from x to $\frac{x}{4}$. The change in
	potential energy will be			
	$(1) + \frac{3}{2}x$	(2) $-\frac{3}{8}x$	$(3) + \frac{3}{4}x$	$(4) - \frac{3}{4}x$
Q.3		4th and 3rd Bohr orbits		
	(1) 2.645×10^{-10} m	(2) 1.322×10^{-10} m	(3) 1.851 × 10 ⁻¹⁰ m	(4) None
Q.4	What atomic number of	of an element "X" would	have to become so that	t the 4th orbit around X would fit
	inside the 1st Bohr orb	it of H atom?		
	(1) 3	(2) 4	(3) 16	(4) 25
Q.5	The energy levels for z	A ^(+z–1) can be given by :		
	(1) E_n for $A^{(+z-1)} = Z^2 \times E_n$	for H	(2) E_n for $A^{(+z-1)} = Z \times E_n$	f <mark>o</mark> r H
	(3) E_n for $A^{(+z-1)} = \frac{1}{z^2} \times I$	E _n for H	(4) E_n for $A^{(+z-1)} = \frac{1}{z} \times E_n$	n f <mark>or</mark> H
Q.6	The angular momentur	m of electron of H-atom	is proportional to:	
	(1) r ²	(2) $\frac{1}{r}$	(3) √r	$(4) \frac{1}{\sqrt{r}}$
Q.7	The mass of an elect	ron is m , its charge is	e and it is accelerated	from rest through a potential
	difference, V . The ve	locity of electron will b	e calculated by formu	la
	$(1) \sqrt{\frac{v}{m}}$	(2) $\sqrt{\frac{eV}{m}}$	(3) $\sqrt{\left(\frac{2eV}{m}\right)}$	(4) None of these
Q.8	Ag metal is 5.52×10^{-19}	J. What will be the maxi	mum kinetic energy of el	ten an electron and the surface of ectron ejected out from Ag which (4) 4.9×10^{-20} J
Q.9		omic orbitals in fourth e		
۷.5	(1) 8	(2) 16	(3) 32	(4) 4
Q.10	According to the Bohr the least energetic pho		owing transitions in the I	hydrogen atom will give rise to
	(1) n = 5 to n = 3	(2) n = 6 to n = 1	(3) $n = 5$ to $n = 4$	(4) n = 6 to n = 5
Q.11	(1) It establishes stabili	is wrong for Bohr mode ty of atom ith Heisenberg uncertain		

(4) e behaves as particle & wave

(3) It explain the concept of spectral lines

Practice Section-03

Q.1	What electronic tran	·	es the radiation of the	same wavelength as the firs	t line in the
	(1) n = 4 to n = 2	(2) $n = 9 \text{ to } n = 9$	6 (3) n= 9 to n =	3 (4) n = 6 to n = 3	
Q.2	The first Lyman trans in the second Balmer (1) Li ²⁺		spectrum has $\Delta E = 10$. (3) He ⁺	2 eV. The same energy change $(4) \text{ Be}^{3+}$	is observed
	. ,	• •	, ,	` '	
Q.3	-	_		matic radiation of waveleng is the wavelength λ ? (R _H = 10 (4) None of these	
Q.4	Line spectra is charac	cteristic of :	JUAL		
Ψ.	(1) Molecules	(2) atoms	(3) radicals	(4) none of these	
Q.5		nes under the influer (2) Stark effect	nce of magnetic field is (3) Photoelect	called : ic effect (4) None of these	
Q.6	(2) The lines of long n = 2 levels	e defined by quantum gest wavelength in the es are closer togethe	n number	ponds to the transition between	en n = 3 and
Q.7	Which of the followin (1) Lyman	ng series of lines in th (2) Paschen	ne atomic emission spec (3) Balmer	trum of hydrogen is in the vis (4) B <mark>ra</mark> ckett	ible region?
Q.8	If 'R _H ' is the Rydberg	constant, then the er	nergy of an electron in	the ground state of hydrogen	atom is :
	$(1) \frac{R_{H}c}{h}$	$(2) \frac{1}{R_{H}ch}$	(3) $\frac{hc}{R_H}$	(4) –R _H hc	
Q.9	If uncertainty in posit	tion and momentum	are equal, then uncerta	ainty in velocity is ?	
	_	Value of the second sec	$(3) \sqrt{\frac{h}{2\pi}}$		
Q.10	The measurement of to 1×10^{-18} g cm s ⁻¹ . 1 (mass of electron = 9 (1) 1×10^{11} cm s ⁻¹	The uncertainty in ele	ectron velocity is:	uncertainty in momentum, wh $(4) \ 1 \times 10^5 \ \text{cm s}^{-1}$	iich is equal
Q.11	A 0.66 kg ball is movi (h = 6.6×10^{-34} Js):- (1) 6.6×10^{-34} m		00 m/s. The associated (3) 1.0×10^{-32} m	wavelength will be $(4) 6.6 \times 10^{-32} \text{ m}$	
Q.12	Smallest wavelength (1) Lyman series	occurs for (2) Balmar series	(3) Paschen series	(4) Brackett series	

Practice Section-04

- Q.1 Which of the following set of quantum number is impossible for an electron?
 - (1) n = 1, l = 0, m $_l$ = 0, m $_s$ = + $\frac{1}{2}$

(2) n = 9,
$$l$$
 = 7, $m_{\tilde{l}}$ = -6, m_s = $-\frac{1}{2}$

- (3) n = 2, l = 1, $m_l = 0$, $m_s = + \frac{1}{2}$
- (4) n = 3, l = 2, $m_{\tilde{l}}$ = -3, m_s = + $\frac{1}{2}$
- **Q.2** Which of the following statements is correct for an electron having azimuthal quantum number l = 2?
 - (1) The electron may be in the lowest energy shell.
 - (2) The electron is in a spherical orbital.
 - (3) The electron must have spin $m_s = +\frac{1}{2}$
 - (4) The electron may have a magnetic quantum number = -1
- Q.3 Four electrons in an atom have the sets of quantum numbers as given below. Which electron in at the highest energy level?
 - (1) n = 4, l = 0, $m_l = 0$, $m_s = +1/2$
- (2) n = 3, l = 1, $m_l = 0$, $m_s = -1/2$
- (3) n = 3, l = 2, $m_l = 0$, $m_s = +1/2$
- (4) n = 4, l = 1, $m_l = -1$, $m_s = -1/2$
- **Q.4** ψ^2 (psi) the wave function represents the probability of finding electron, its values depends:
 - (1) inside the nucleus

(2) far from the nucleus

(3) near the nucleus

- (4) upon the type of orbital
- Q.5 Which set of quantum numbers is possible for the last electron of Mg⁺ ion?
 - (1) n = 3, l = 2, m = 0, s = +1/2

(2) n = 2, l = 3, m = 0, s = +1/2

(3) n = 1, l = 0, m = 0, s = +1/2

- (4) n = 3, l = 0, m = 0, s = +1/2
- Q.6 In any subshell, the maximum number of electrons having same value of spin quantum number is :
 - (1) $\sqrt{\ell(\ell+1)}$
- (2) l + 2
- (3) 2l + 1
- (4) 4l + 2
- **Q.7** The electronic configuration of silver atom in ground state is:
 - (1) [Ar]3d¹⁰, 4s¹
- $(2) [Xr] 4f^{14}, 5d^{10}, 6s^1$
- (3) [Kr]4d¹⁰, 5s¹
- (4) [Kr]4d⁹, 5s²

- Q.8 Which of the following statement is (are) correct?
 - (1) The electronic configuration of Cr is $[Ar]3d^5,4s^1$ (Atomic no. of Cr = 24)
 - (2) The magnetic quantum number may have a negative value
 - (3) In silver atom, 23 electrons have a spin of one type and 24 of the opposite type, (Atomic no. of Ag =47)
 - (4) All of the above
- Q.9 Maximum number of electrons in a subshell of an atom is determined by the following:-
 - $(1) 2n^2$
- (2) $4\ell + 2$
- (3) $2\ell + 1$
- (4) $4\ell 2$
- Q.10 Which of the following is not permissible arrangement of electrons in an atom?
 - (1) n = 3, $\ell = 2$, m = -2, s = -1/2
- (2) n = 4, $\ell = 0$, m = 0, s = -1/2
- (3) n = 5, $\ell = 3$, m = 0, s = +1/2
- (4) n = 3, $\ell = 2$, m = -3, s = -1/2
- **Q.11** If n = 6, the correct sequence for filling of electrons will be :
 - (1) ns \rightarrow (n-2)f \rightarrow (n-1)d \rightarrow np
- (2) ns \rightarrow (n-1)d \rightarrow (n-2)f \rightarrow np
- (3) ns \rightarrow (n-2)f \rightarrow np \rightarrow (n-1)d
- (4) ns \rightarrow np (n-1)d \rightarrow (n-2)f

ANSWER KEY

PRACTICE SECTION-01

Que.	1	2	3	4	5	6	7	8	9	10
Ans:	3	2	4	1	3	3	4	2	4	3

PRACTICE SECTION-02

Que.	1	2	3	4	5	6	7	8	9	10	11
Ans:	1	1	3	3	1	3	3	1	2	4	4

PRACTICE SECTION-03

Que.	1	2	3	4	5	6	7	8	9	10	11	12
Ans:	4	3	1	2	1	3	3	4	2	2	2	1

PRACTICE SECTION-04

Que.	1	2	3	4	5	6	7	8	9	10	11	70
Ans:	4	4	4	4	4	3	4	2	2	4	3	

