Chapter

03

Quadratic Equation

CONTENT

- Introduction
- Solution of Quadratic Equation
- Sum and product of roots
- Formation of a quadratic equation when roots are given
- Formation of quadratic equation whose roots are symmetric expression of α and β
- Nature of Roots
- Quadratic Expression and Its Graph
- Theory of Equations
- Condition of common roots
- Maximum and minimum values of quadratic and rational functions
- Resolving a general quadratic expression in x and y into two linear factors
- Solution of quadratic inequalities
- Location of Roots

1.INTRODUCTION:

11 Polynomial:

An expression of the type $f(x) = a_n x^n + a_{n-1} x^{n-1} + + a_0$, where $a_0, a_1, a_2 ... a_n$ are constants is called a polynomial of degree 'n', where $n \in \mathbb{N}$ and a_n which is called **leading coefficient** of the polynomial should not be equal to zero.

1.2 Quadratic Expression:

A second degree expression in one variable which contains the variable with an exponent of 2; but not higher power is called a quadratic expression.

$$\Rightarrow$$
 Ex. y = ax² + bx + c,

where a = leading coefficient & c = absolute term of quadratic polynomial.

1.3 QUADRATIC EQUATION:

If quadratic polynomial is equated to zero, the equation formed is called a quadratic equation.

Ex. :
$$ax^2 + bx + c = 0$$
; $a \ne 0$

⇒ If leading coefficient is 1 then polynomial is called **monic polynomial**.

Solving a quadratic equation means finding the values of x for which ax² + bx + c vanishes. These values of x are called the roots of quadratic equation.

2. SOLUTION OF QUADRATIC EQUATION:

2.1 Factorization Method:

Let
$$ax^2 + bx + c = a(x - \alpha)(x - \beta) = 0$$

Then $x = \alpha$ and $x = \beta$ will satisfy the given equation. Hence α and β are the solutions of quadratic equation.

2.2 Quadratic Formula (Sri Dharacharya Method):

$$ax^{2} + bx + c = 0$$
.

$$\Rightarrow$$
 $x^2 + \frac{b}{a}x + \frac{c}{a} = 0$

$$\Rightarrow \left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} = 0$$

$$\Rightarrow x + \frac{b}{2a} = \frac{\pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{a}$$

Let the roots of the given quadratic equation are $\alpha \& \beta$.

Then
$$\alpha = \frac{-b + \sqrt{D}}{2a}$$
 and $\beta = \frac{-b - \sqrt{D}}{2a}$, where $D = b^2 - 4ac$

3. **SUM AND PRODUCT OF ROOTS**

$$ax^{2} + bx + c = 0;$$

$$a \neq 0$$

If
$$\alpha$$
, β are the roots then $\alpha + \beta = \frac{-b}{a}$; $\alpha\beta = \frac{c}{a}$ and $\alpha - \beta = \pm \frac{\sqrt{D}}{a}$

FORMATION OF A QUADRATIC EQUATION WHEN ROOTS ARE GIVEN:

Let α and β be the given roots of a quadratic equation, then

$$(x - \alpha) (x - \beta) = 0$$

$$x^2 - x (\alpha + \beta) + \alpha\beta = 0$$

$$x^2 - x$$
 (sum of the roots) + (Product of the roots) = 0

DETECTIVE MIND

Some Transformation in terms of $\alpha + \beta$ and $\alpha\beta$ ($\alpha, \beta \in R$):

$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$

$$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$$

$$|\alpha - \beta| = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta}$$

$$\alpha^4 + \beta^4 = [(\alpha + \beta)^2 - 2\alpha\beta]^2 - 2\alpha^2\beta^2$$

5. FORMATION OF QUADRATIC EQUATION WHOSE ROOTS ARE SYMMETRIC EXPRESSION OF α AND β :

Let α and β be the roots of a quadratic equation ax² +bx + c = 0 then finding another quadratic equation whose roots are $2\alpha + 3$, $2\beta + 3$.

Suppose
$$2\alpha + 3 = y \Rightarrow \alpha = \frac{y-3}{2}$$

Put the value of α in the given equation ($\cdot \cdot \cdot \alpha$ is its roots) and get a quadratic in y.

$$\frac{a(y-3)^2}{4} + \frac{b(y-3)}{2} + c = 0$$

$$a (y-3)^2 + 2b (y-3) + 4c = 0$$

$$ay^2 + 2y (b - 3a) + 9a - 6b + 4c = 0$$

Replace y by x and get the desired equation.

$$ax^2 + 2x (b - 3a) + 9a - 6b + 4c = 0.$$

DETECTIVE MIND

If α , β are roots of the equation $ax^2 + bx + c = 0$ then the equation whose roots are

(i)
$$-\alpha$$
, $-\beta$ \Rightarrow ax² - bx + c = 0 (Replace x by - x)

(ii)
$$\frac{1}{\alpha}$$
, $\frac{1}{\beta}$ \Rightarrow cx² + bx + a = 0 (Replace x by $\frac{1}{x}$)

(iii)
$$k\alpha$$
, $k\beta$ $\Rightarrow ax^2 + kbx + k^2c = 0$. Replace x by $\frac{x}{k}$

(iv)
$$k + \alpha$$
, $k + \beta \implies a(x - k)^2 + b(x - k) + c = 0$ (Replace x by $(x - k)$)

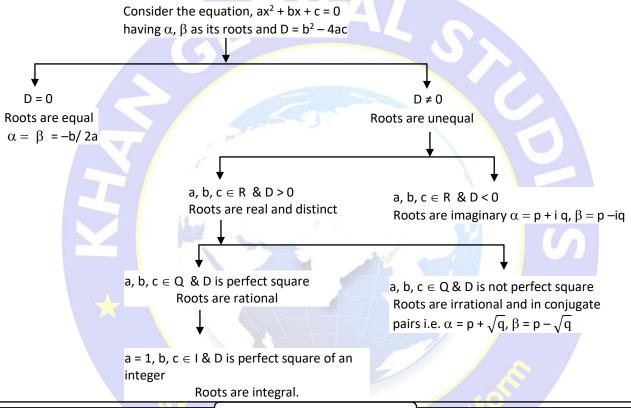
(v)
$$\frac{\alpha}{k}$$
, $\frac{\beta}{k}$ \Rightarrow $k^2ax^2 + kbx + c = 0$ (Replace x by kx)

6. NATURE OF ROOTS:

Consider the quadratic equation $ax^2 + bx + c = 0$, and $a \ne 0$. Roots of the equation are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Now, we observe that the roots depend upon the value of the quantity $b^2 - 4ac$. This quantity is generally denoted by D and is known as the **discriminant** of the quadratic equation which decides nature of the roots.



SOLVED EXAMPLES

Example: 1 If one root of the equation $4x^2 + 2x - 1 = 0$ is α , then other root is

$$(1) 2\alpha$$

(2)
$$4\alpha^{3} - 3\alpha$$

$$(3) 4\alpha^3 + 3\alpha$$

(4) None of these

Solution: Let α and β are roots of the given equation, then

$$\alpha + \beta = -\frac{1}{2} \Rightarrow \beta = -\frac{1}{2} - \alpha$$

Now
$$4\alpha^2 + 2\alpha - 1 = 0 \Rightarrow 4\alpha^2 = 1 - 2\alpha$$

.... (1)

Now
$$4\alpha^3 = \alpha - 2\alpha^2 = \alpha - \frac{1}{2}(1 - 2\alpha)$$

[from (1)]

$$\therefore 4\alpha^3 - 3\alpha = -2\alpha - \frac{1}{2}(1 - 2\alpha) = -\frac{1}{2} - \alpha = \beta$$

Example: 2 If $x^2 - 4x + \log_{1/2} a = 0$ does not have two distinct real roots, then maximum value of a is

- (1) $\frac{1}{4}$
- (2) $\frac{1}{16}$
- (3) $\frac{-1}{4}$

(4) None of these

Since $x^2 - 4x + \log_{1/2} a = 0$ does not have two distinct real roots, discriminant ≤ 0 Solution:

$$\Rightarrow$$
 16 - 4log_{1/2} a \leq 0 \Rightarrow log_{1/2} a \geq 4 \Rightarrow a \leq $\frac{1}{16}$, \therefore max. a = $\frac{1}{16}$

A quadratic polynomial p(x) has $1+\sqrt{5}$ and $1-\sqrt{5}$ roots and it satisfies p (1) = 2. Find the Example: 3

quadratic polynomial.

Solution: Sum of the roots = 2, product of the roots = -4

.. Let
$$p(x) = a(x^2 - 2x - 4)$$

⇒ p(1) = 2 ⇒ 2 = a(1² – 2.1 – 4) ⇒ a =
$$-\frac{2}{5}$$

$$p(x) = -\frac{2}{5} (x^2 - 2x - 4)$$

If the equation $(k-2)x^2 - (k-4)x - 2 = 0$ has difference of roots as 3 then the value of k is Example: 4

(2)
$$3, \frac{3}{2}$$

(2) 3,
$$\frac{3}{2}$$
 (3) 2, $\frac{3}{2}$

$$(4) \frac{3}{2},1$$

Solution:

Now,
$$\alpha + \beta = \left(\frac{k-4}{k-2}\right)$$
, $\alpha\beta = \frac{-2}{k-2}$

$$\therefore (\alpha - \beta) = \sqrt{\left(\frac{k-4}{k-2}\right)^2 + \frac{8}{(k-2)}} = \frac{\sqrt{k^2 + 16 - 8k + 8(k-2)}}{k-2}$$

$$3 = \frac{\sqrt{k^2 + 16 - 8k + 8(k - 2)}}{k - 2}$$

$$3k - 6 = \pm k$$

$$k = 3, \frac{3}{2}$$

Example: 5 For what values of m the equation $(1 + m) x^2 - 2(1 + 3m)x + (1 + 8m) = 0$ has equal roots.

Solution: Given equation is $(1 + m) x^2 - 2(1 + 3m) x + (1 + 8m) = 0.....(i)$

Let D be the discriminant of equation (i).

Roots of equation (i) will be equal if D = 0.

or
$$4(1+3m)^2-4(1+m)(1+8m)=0$$

or
$$4(1 + 9m^2 + 6m - 1 - 9m - 8m^2) = 0$$

or
$$m^2 - 3m = 0$$

or
$$m(m-3) = 0$$

$$\therefore$$
 m = 0, 3.

Find all the integral values of a for which the quadratic equation (x - a)(x - 10) + 1 = 0 has integral Example: 6

Solution: Here the equation is x^2 (a + 10) x + 10a + 1 = 0. Since integral roots will always be rational it means D should be a perfect square.

From (i) $D = a^2 - 20a + 96$.

$$\Rightarrow$$
 D = $(a - 10)^2 - 4$

$$\Rightarrow$$
 4 = (a - 10)² - D

If D is a perfect square it means we want difference of two perfect square as 4 which is possible only when $(a - 10)^2 = 4$ and D = 0.

$$\Rightarrow$$
 (a – 10) = \pm 2

$$\Rightarrow$$
 a = 12, 8

If the roots of the quadratic equation $x^2 - 4x - \log_3 a = 0$ are real, then the least value of a is-Example: 7

> (1)81(2) 1/81

(3) 1/64(4) None of these

Solution: Since the roots of the given equation are real.

 \therefore D \geq 0 \Rightarrow 16 + 4 log₃a \geq 0

 $\Rightarrow \log_3 a \ge -4 \Rightarrow a \ge 3^{-4} \Rightarrow a \ge 1/81$

Hence, the least value of a is 1/81.

The quadratic equation whose one root is $\frac{1}{2+\sqrt{5}}$ will be-Example: 8

(1) $x^2 + 4x - 1 = 0$ (2) $x^2 - 4x - 1 = 0$ (3) $x^2 + 4x + 1 = 0$ Given root = $\frac{1}{2 + \sqrt{5}} = \sqrt{5} - 2$ (4) None of these

Solution:

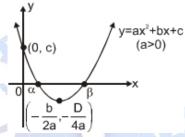
So the other root = $-\sqrt{5}$ – 2. Then sum of the roots = – 4, product of the roots = – 1

Hence the equation is $x^2 + 4x - 1 = 0$

-

QUADRATIC EXPRESSION AND ITS GRAPH:

In y = $ax^2 + bx + c$, if a, b, $c \in R$ and $a \ne 0$. Graph of quadratic takes the shape of a parabola.



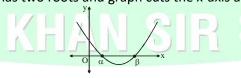
- The graph between x , y is always a parabola. 1.
- 2. If a > 0 then the shape of the parabola is concave upwards & if a < 0 then the shape of the parabola is concave downwards.
- The co-ordinate of vertex is $\left(-\frac{b}{2a}, -\frac{D}{4a}\right)$ 3.
- 4. The parabola intersect the y-axis at point (0, c)
- 5. The x-coordinate of point of intersection of parabola with x-axis are the real roots of the quadratic equation f(x) = 0. Hence the parabola may or may not intersect the x-axis at real points.

Note:

For different values of a, b, c if graph $y = ax^2 + bx + c$ is plotted then following 6 different shapes are obtained.

If a > 0 and D > 0Case-I:

Then quadratic equation has two roots and graph cuts the x-axis at two distinct points.

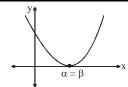


(i)
$$y > 0$$
, if $x < \alpha$ or $x > \beta$

(ii)
$$y < 0$$
, if $\alpha < x < \beta$

Case-II: If a > 0 and D = 0

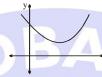
Then curve touches x-axis. Hence both zeroes of polynomial coincides.



In this type, equation becomes $y = a(x - \alpha)^2$ and $y \ge 0$, for all $x \in R$.

Case-III: If a > 0 and D < 0

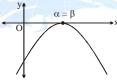
Then curve completely lies above x-axis.



In this case imaginary roots appears and y > 0 for all $x \in R$.

Case-IV: If a < 0 and D = 0

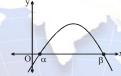
Then graph touches the x-axis from below.



In this case $x \in R$, $y \le 0$ for all $x \in R$.

Case-V: If a < 0 and D > 0

Then graph is downward and cuts the x-axis at two distinct points.



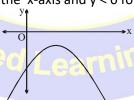
In this case

(i)
$$y > 0$$
, if $\alpha < x < \beta$

(ii)
$$y < 0$$
, if $x < \alpha$ or $x > \beta$

Case-VI: If a < 0 and D < 0

Then graph lies completely below the x-axis and y < 0 for all $x \in R$.



DETECTIVE MIND

- $\forall x \in R, y > 0$ if an only if a > 0 and $b^2 4ac < 0$
- $ightarrow \forall x \in R, y < 0 \text{ if and only if a } < 0 \text{ and } b^2 4ac < 0$

8. THEORY OF EQUATIONS:

Relation between roots and coefficients of polynomial equation:

If $\alpha_1, \alpha_2, \alpha_3...\alpha_n$ are the roots of the equation;

$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + ... + a_{n-1} x + a_n = 0$$

Where $a_0, a_1, ... a_n$ are all real and $a_0 \neq 0$ then,

$$\Sigma \alpha_{1} = -\frac{a_{1}}{a_{0}}, \Sigma \alpha_{1} \alpha_{2} = +\frac{a_{2}}{a_{0}},$$

$$\Sigma \alpha_{1} \alpha_{2} \alpha_{3} = -\frac{a_{3}}{a_{0}}, \dots, \sum \alpha_{1} \alpha_{2} \alpha_{3} \dots \alpha_{n} = (-1)^{n} \frac{a_{n}}{a_{0}}.$$

Note:

- If α is a root of the equation f(x) = 0, then the polynomial f(x) is exactly divisible by $(x \alpha)$ or $(x \alpha)$ is a 1. factor of f(x) and conversely.
- Every equation of n^{th} degree ($n \ge 1$) has exactly n roots & if the equation has more than n roots, it is an identity. 2.
- If the coefficients of the equation f(x) = 0 are all real and $\alpha + i\beta$ is its root, then $\alpha i\beta$ is also a root. i.e. 3. imaginary roots occur in conjugate pairs.
- If the coefficients in the equation are all rational & $\alpha + \sqrt{\beta}$ is one of its roots, then $\alpha \sqrt{\beta}$ is also a root 4. where α , $\beta \in Q \& D$ is not a perfect square
- If there be any two real numbers 'a' & 'b' such that f(a) & f(b) are of opposite signs, then f(x) = 0 must has 5. atleast one real root between 'a' and 'b'.
- Every equation f(x) = 0 of odd degree has at least one real root of a sign opposite to that of constant term. 6.
- 7. A polynomial equation of degree odd with real coefficient must have at least one real root as imaginary roots always occur in pair of conjugates.

9. **CONDITION OF COMMON ROOTS:**

9.1 Condition for one common root:

Let $a_1x^2 + b_1x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ have a common root α .

Hence
$$a_1\alpha^2 + b_1\alpha + c_1 = 0$$

$$a_2\alpha^2 + b_2\alpha + c_2 = 0$$

by cross multiplication

$$\frac{\alpha^2}{b_1c_2 - b_2c_1} = \frac{\alpha}{a_2c_1 - a_1c_2} = \frac{1}{a_1b_2 - a_2b_1}$$

$$\therefore \quad \alpha = \frac{b_1c_2 - b_2c_1}{a_2c_1 - a_1c_2} = \frac{a_2c_1 - a_1c_2}{a_1b_2 - a_2b_1}, \text{ which is the required condition.}$$

This is also the condition that the two quadratic functions $a_1x^2 + b_1xy + c_1y^2$ and $a_2x^2 + b_2x y + c_2y^2$ may have a common factor.

9.2 Condition for both the common roots:

If both roots of the given equations are common then $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

DETECTIVE MIND

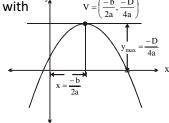
If the roots of the equation $a_1x^2 + b_1x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ are in the same ratio then

10. MAXIMUM AND MINIMUM VALUES OF QUADRATIC AND RATIONAL FUNCTIONS:

 $y = ax^2 + bx + c$ attains its maximum value or minimum value at the point with (i)

abscissa $x = \frac{-b}{2a}$ according to a < 0 or a > 0.

Now, If a < 0, then $y_{max} = \frac{-D}{4a}$ and it occurs at $x = \frac{-b}{2a}$.



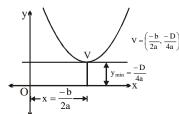
If a > 0, then $y_{min} = \frac{-D}{4a}$ and it occurs at $x = \frac{-b}{2a}$.

where $D = b^2 - 4ac$

Range when $x \in R$:

If
$$a > 0 \Rightarrow f(x) \in \left[-\frac{D}{4a}, \infty\right]$$

If
$$a < 0 \Rightarrow f(x) \in \left(-\infty, -\frac{D}{4a}\right]$$



(ii) Range of functions expressed in the form of $\frac{P(x)}{Q(x)}$ where P(x) and Q(x) are quadratic polynomials.

either linear or

TYPE-1:
$$y = \frac{ax + b}{px + q} \frac{\text{(Linear)}}{\text{(Linear)}}$$

Example: Find the range of the function.
$$y = \frac{3x+2}{x-1}$$
, $x \ne 1$

Solution:
$$y = \frac{3x - 3 + 5}{x - 1} \Rightarrow y = 3 + \frac{5}{x - 1} \Rightarrow y - 3 = \frac{5}{x - 1} \Rightarrow x - 1 = \frac{5}{y - 3}$$
$$\Rightarrow x = \frac{5}{y - 3} + 1 = \frac{5 + y - 3}{y - 3} \Rightarrow x = \frac{y + 2}{y - 3}, y \neq 3$$

TYPE-2
$$y = \frac{ax + b}{px^2 + qx + r}$$
 (linear) (quadratic

Example: If x is real then find the range of the function
$$y = \frac{x+2}{x^2+3x+6}$$

Solution:
$$y = \frac{x+2}{x^2+3x+6}$$
⇒ $x^2y + 3xy + 6y = x + 2$ ⇒ $x^2y + x(3y-1) + 6y - 2 = 0$
∴ $x \text{ is real}$ ∴ $D \ge 0$
⇒ $(3y-1)^2 - 4y (6y - 2) \ge 0$ ⇒ $9y^2 - 6y + 1 - 24y^2 + 8y \ge 0$
⇒ $15y^2 - 2y - 1 \le 0$ ⇒ $y \in \left[-\frac{1}{5}, \frac{1}{3}\right]$

TYPE-3:
$$y = \frac{ax^2 + bx + c}{px^2 + qx + r} \left(\frac{Quadratic}{Quadratic} \right)$$

Example: If x is real then prove that
$$y = \frac{x^2 - 3x + 4}{x^2 + 3x + 4}$$
 lies from $\frac{1}{7}$ to 7.

Solution:
$$\frac{x^2 - 3x + 4}{x^2 + 3x + 4} = y$$

$$x^2 (y-1) + 3x (y + 1) + 4(y - 1) = 0 \qquad ... (i)$$
For a quadratic equation, so efficient of $x^2 \neq 0$

For a quadratic equation, co-efficient of
$$x^2 \neq 0$$

 $\therefore y \neq 1$

..
$$y \neq 1$$

 \therefore x is real \therefore D \geq 0
 \Rightarrow 9(y+1)²-16 (y-1)² \geq 0 \Rightarrow -7y² + 50 y -7 \geq 0
 \Rightarrow 7y² - 50y + 7 \leq 0

$$\Rightarrow (7y-1)(y-7) \le 0$$

$$\Rightarrow$$
 $y \in \left[\frac{1}{7}, 7\right]$ but $y = 1$ is not included.

If y = 1
$$\Rightarrow \frac{x^2 - 3x + 4}{x^2 + 3x + 4} = 1$$

$$\Rightarrow$$
 6x = 0

$$\Rightarrow$$
 x = 0

 \therefore y = 1 is also one of the value in the range.

Hence,
$$y \in \left[\frac{1}{7}, 7\right]$$

SOLVED EXAMPLES

The value of 'p' for which the sum of the square of the roots of $2x^2 - 2(p-2)x - p - 1 = 0$ is least, is Example: 9

(2)
$$\frac{3}{2}$$

Solution: Let α and β be two roots of the equation

$$2x^2-2(p-2)x-p-1=0$$
. Then

$$\alpha + \beta = p - 2$$
 and $\alpha \beta = \frac{-p - 1}{2}$

Let
$$S = \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = (p-2)^2 + p + 1 = p^2 - 3p + 5 = \left(p - \frac{3}{2}\right)^2 + \frac{11}{4}$$

Which is least when $p = \frac{3}{2}$

The value of m for which one of the roots of $x^2 - 3x + 2m = 0$ is double of one of the roots of Example: 10 $x^{2} - x + m = 0$ is

$$(3) 2,-2$$

(4) None of these

Let α be the root of $x^2-x+m=0$ and 2α be the root of $x^2-3x+2m=0$. Then, $\alpha^2-\alpha+m=0$ Solution: and $4\alpha^2 - 6\alpha + 2m = 0$

$$\frac{\alpha^2}{-m+3m} = \frac{\alpha}{2m-m} = \frac{1}{-3+2} \Rightarrow \frac{\alpha^2}{2m} = \frac{\alpha}{m} = -1$$

$$\Rightarrow$$
 m² = -2m

$$\Rightarrow$$
m=0,m=-2

Example: 11 The value of the expression $x^2 + 2bx + c$ will be positive if

(1)
$$b^2 - 4c > 0$$
 (2) $b^2 - 4c < 0$

(2)
$$b^2 - 4c < 0$$

(3)
$$c^2 < b$$

(4)
$$b^2 < c$$

Expression = $(x+b)^2 - b^2 + c = (x+b)^2 + (c-b^2)$ **Solution:**

 \therefore expression will be positive if $c-b^2 > 0 \implies b^2 < c$

If the roots of the equations $x^2 + 3x + 2 = 0$ and $x^2 - x + \lambda = 0$ are in the same ratio then the value of Example: 12 λ is given by

$$(1) \frac{2}{7}$$

(2)
$$\frac{2}{9}$$

(3)
$$\frac{9}{2}$$

(4)
$$\frac{7}{2}$$

If roots are in same ratio then $\frac{b_1^2}{b_2^2} = \frac{a_1c_1}{a_2c_2}$ **Solution:**

$$\frac{3^{2}}{\left(-1\right)^{2}} = \frac{\left(1\right).\left(2\right)}{\left(1\right).\left(\lambda\right)} \Rightarrow 9 = \frac{\left(2\right)}{\left(\lambda\right)} \Rightarrow \lambda = \frac{2}{9}$$

Let p(x) = 0 be a polynomial equation of least possible degree, with rational coefficients, having Example: 13

 $\sqrt[3]{7} + \sqrt[3]{49}$ as one of its roots. Then the product of all the roots of p(x) = 0 is

- (1)7
- (2)49

Solution:

$$x = \sqrt[3]{7} + \sqrt[3]{49}$$

$$\Rightarrow x^3 = 7 + 49 + 3\sqrt[3]{7} \cdot \sqrt[3]{49} \left(\sqrt[3]{7} + \sqrt[3]{49} \right) =$$

Example: 14

 $\Rightarrow x^3 = 7 + 49 + 3\sqrt[3]{7} \cdot \sqrt[3]{49} \left(\sqrt[3]{7} + \sqrt[3]{49} \right) \Rightarrow x^3 - 21x - 56 = 0 \Rightarrow \text{ Product of root} = 56.$

The equations $x^2 + b^2 = 1 - 2bx$ and $x^2 + a^2 = 1 - 2ax$ have one and only one root common. Then (1) a-b=2 (2) a-b+2=0

- (3) |a-b|=2
- (4) All of these

Solution:

$$(x+b)^2 = 1 \Rightarrow x = -b \pm 1$$

$$(x+a)^2 = 1 \Rightarrow x = -a \pm 1$$

Clearly, $a \neq b$. So, one and only one root common means, -b+1=-a-1 or -b-1=-a+1

$$\Rightarrow$$
 a - b = -2 or a - b = 2

$$\Rightarrow |a-b|=2$$

Example: 15 Let $P(x) = ax^2 + bx + 8$ is a quadratic polynomial. If the minimum value of P(x) is 6 when x = 2, find

the values of a and b.

Solution:

$$P(x) = ax^2 + bx + 8 ... (1)$$

$$P(2) = 4a + 2b + 8 = 6 \dots (2)$$

$$-\frac{b}{2a} = 2$$

From (2), we get $-b + 2b = -2 \implies b = -2$

- \therefore 4a = $-(-2) \Rightarrow$ a = 1/2 If the expression $x^2 - 11x + a$ and $x^2 - 14x + 2a$ have a common factor and $a \ne 0$, then the common Example: 16
- factor is

$$(1)(x-3)$$

$$(2)(x-6)$$

$$(3)(x-8)$$

(4) None of these

P(x)

Solution:

Here Let $x-\alpha$ is the common factor

then $x = \alpha$ is root of the corresponding equation

$$\therefore \alpha^2 - 11\alpha + a = 0$$

$$\alpha^2 - 14\alpha + 2a = 0$$

Subtracting $3\alpha - a = 0 \Rightarrow \alpha = \frac{a}{3}$

Hence
$$\frac{a^2}{9} - 11\frac{a}{3} + a = 0, a = 0 \text{ or } a = 24$$

since $a \neq 0$, a = 24

the common factor of $\begin{cases} x^2 - 11x + 24 \\ x^2 - 14x + 48 \end{cases}$ is clearly (x - 8)

Example: 17

If $Q_1(x) = x^2 + (k - 29) x - k$ and $Q_2(x) = 2x^2 + (2k - 43) x + k$ both are factors of a cubic polynomial P(x), then the largest value of k is

- (2)33
- (3)23

(4)30

Solution:

Two quadratic polynomials can be a factor of cubic polynomial only when they have atleast one root common

$$\Rightarrow$$
 x² + (k - 29) x -k = 0

and $2x^2 + (2k-43)x + k = 0$

..... (2)

(4) None of these

Must have a common root

Multiplying equation (1) by 2 and subtracting, we get

 $15x+3k = 0 \Rightarrow x = \frac{-k}{5}$ is the common root

and it must satisfy equation (1)

$$\Rightarrow \frac{k^2}{25} + (k-29)\left(-\frac{k}{5}\right) - k = 0 \qquad \Rightarrow \left(-\frac{k}{5}\right) \left[-\frac{k}{5} + k - 29 + 5\right] = 0$$

$$\Rightarrow$$
 k = 0 or k = 30

Example: 18 Find the maximum value of $f(x) = -3x^2 + 6x + 5$.

Solution: Since, a < 0

$$f(x) \max = -\frac{D}{4a} = -\left(\frac{36-4(-3)5}{4(-3)}\right) = \frac{36+60}{12} = 8$$

Alternative method:

$$f(x) = -3(x^2 - 2x + 1) + 5 + 3 = -3(x - 1)^2 + 8$$
. Clearly $f(x)_{max} = 8$ at $x = 1$.

Example: 19 If one root of the equation $x^2 + ax + b = 0$ is also a root of $x^2 + mx + n = 0$, show that its other root

is a root of $x^2 + (2a - m) x + a^2 - am + n = 0$.

Solution: Let α be a root of the equation $x^2 + ax + b = 0$ which is also a root of $x^2 + mx + n = 0$.

Let β be the other root of x^2 + ax+ b = 0, then α + β = – a.

We have $\alpha = -a - \beta$

Since α is a root of $x^2 + mx + n = 0$, we get

 $(-a - \beta)^2 + m (-a - \beta) + n = 0$

or $\beta^2 + 2a\beta + a^2 - ma - m\beta + n = 0$

or $\beta^2 + (2a - m)\beta + a^2 - ma + n = 0$

Thus, β is a root of $x^2 + (2a - m)x + a^2 - ma + n = 0$.

Example: 20 If α , β are roots of the equation $ax^2 + 3x + 2 = 0$ (a < 0), then $\frac{\alpha^2}{\beta} + \frac{\beta}{\alpha}$ is greater than-

(1) 0 (2) 1 Since a < 0, therefore discriminant

D = 9 - 8a > 0. So, α and β are real.

We have $\alpha + \beta = \frac{-3}{a}$ and $\alpha\beta = \frac{2}{a}$

$$\therefore \frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta} = \frac{(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)}{\alpha\beta} = \frac{(\alpha + \beta)^3}{\alpha\beta} - 3(\alpha + \beta)$$

 $= -\frac{27}{2a^2} + \frac{9}{a} < 0 \quad [\because a < 0]$ So, option (4) is correct.

Solution:

11. RESOLVING A GENERAL QUADRATIC EXPRESSION IN x AND y INTO TWO LINEAR FACTORS:

The condition that a quadratic function $f(x,y) = ax^2 + 2 hxy + by^2 + 2 gx + 2 fy + c$ may be resolved into two linear factors is if $abc + 2 fgh - af^2 - bg^2 - ch^2 = 0$

12. **SOLUTION OF QUADRATIC INEQUALITIES:**

The values of 'x' satisfying the inequality, $ax^2 + bx + c > 0$ (a $\neq 0$) a, b, c $\in R$ are:

1. If D > 0, i.e. the equation $ax^2 + bx + c = 0$ has two different roots, $\alpha < \beta$.

Then
$$a > 0 \Rightarrow x \in (-\infty, \alpha) \cup (\beta, \infty)$$

$$a < 0 \Rightarrow x \in (\alpha, \beta)$$

2. If D = 0, i.e. roots are equal, i.e. $\alpha = \beta$.

Then
$$a > 0 \Rightarrow x \in (-\infty, \alpha) \cup (\alpha, \infty)$$

$$a < 0 \Rightarrow x \in \phi$$

If D < 0, i.e. the equation $ax^2 + bx + c = 0$ has no real roots.

Then
$$a > 0 \Rightarrow x \in R$$

$$a < 0 \Rightarrow x \in \phi$$

13. **LOCATION OF ROOTS:**

Let $f(x) = ax^2 + bx + c$, where a > 0 and $a, b, c \in R$.

- 1. Conditions for both the roots of f(x) = 0 to be greater than a specified number 'd' are $b^2 - 4ac \ge 0; f(d) > 0 \text{ and } (-b/2a) > d.$
- Conditions for both roots of f(x) = 0 to lie on either side of the number 'd' (in other words the number 'd' 2. lies between the roots of f(x) = 0) is f(d) < 0 and $b^2 - 4ac > 0$.
- Conditions for exactly one root of f(x) = 0 to lie in the interval (d, e) and other root is neither d nor e. i.e. d < x < 13. e are $b^2 - 4ac > 0$ and $f(d) \cdot f(e) < 0$.
- 4. Conditions that both roots of f(x) = 0 to lie between the numbers p and q are

$$(p < q) \cdot b^2 - 4ac \ge 0; f(p) > 0; f(q) > 0 \text{ and } p < (-b/2a) < q.$$

Condition that one root is greater than e and the other root is less than d are: $b^2 - 4ac > 0$; f(d) < 0 and f(e) < 0 5. **Extra Result:**

A quadratic equation is satisfied by exactly two values of 'x' which may be real or imaginary. The equation, $ax^{2} + bx + c = 0$, a, b, $c \in R$ is :

A quadratic equation if $a \neq 0$

Two Roots

A linear equation if

A contradiction if

 $a = 0, b \neq 0$

One Root

An identity if

 $a = b = 0, c \neq 0$

No Root

a = b = c = 0

Infinite Roots

SOLVED EXAMPLES

Example: 21 Prove that the expression $2x^2 + 3xy + y^2 + 2y + 3x + 1$ can be factorized into two linear factors. Find them.

Solution:
$$2x^2 + 3xy + y^2 + 2y + 3x + 1$$

Comparing given equation with $ax^2 + 2hxy + by^2 + 2gx + 2fy + c$, we get

a = 2, h =
$$\frac{3}{2}$$
, b = 1, g = $\frac{3}{2}$, f = 1, c = 1

Clearly,
$$abc + 2fgh - af^2 - bg^2 - ch^2 = 0$$

⇒ Given expression can be factorized into two linear factor

To find the factors, form the quadratic equation in x

$$2x^2 + 3x (y + 1) + (y + 1)^2$$

$$\Rightarrow x = \frac{-3(y+1) \pm \sqrt{(y+1)^2}}{4} \Rightarrow 4x = -3(y+1) \pm (y+1)$$

$$\Rightarrow$$
 4x = -2(y+1)

or
$$4x = -4(y+1)$$

$$\Rightarrow 2x+y+1=0$$

or
$$x + y + 1 = 0$$

Example: 22 If x is real and $4y^2 + 4xy + x + 6 = 0$, then find the complete set of values of x for which y is real.

Solution: $4y^2 + 4xy + x + 6 = 0, y \in R$

$$\therefore D \ge 0 \Rightarrow 16x^2 - 16(x+6) \ge 0$$

$$\Rightarrow x^2 - x - 6 \ge 0 \Rightarrow (x - 3)(x + 2) \ge 0$$

$$-2$$

$$\therefore x \in (-\infty, -2] \cup [3, \infty)$$

Example: 23 Find the values of 'x' for which the inequality $-1 \le \frac{3x^2 - 7x + 8}{x^2 + 1} \le 1$, is satisfied.

Solution:
$$-1 \le \frac{3x^2 - 7x + 8}{x^2 + 1} \le 1$$

$$\Rightarrow \frac{3x^2 - 7x + 8}{x^2 + 1} \ge -1 \quad \text{and} \quad \frac{3x^2 - 7x + 8}{x^2 + 1} \le 1$$

$$\Rightarrow 4x^2 - 7x + 9 \ge 0$$

and
$$2x^2 - 7x + 7 \le 0$$

$$\Rightarrow x \in R$$

and
$$x \in \phi$$

No value of x is present which satisfy the given inequality.

Example: 24 $(x^2 + 3x + 1) (x^2 + 3x - 3) \ge 5$ **Solution:** $(x^2 + 3x + 1) (x^2 + 3x - 3) \ge 5$

Let
$$x^2 + 3x = t$$

$$\Rightarrow$$
 $(t+1)(t-3) \ge 5 \Rightarrow t^2 - 2t - 8 \ge 0$

$$\implies (t-4)(t+2) \ge 0$$

$$\Rightarrow t \in (-\infty, -2] \cup [4, \infty)$$

$$\Rightarrow x^2 + 3x \le -2$$

or
$$x^2 + 3x \ge 4$$

$$\Rightarrow$$
 $x^2 + 3x + 2 \le 0$

or
$$x^2 + 3x \ge 4$$

$$\Rightarrow$$
 $(x + 1) (x + 2) \leq 0$

or
$$(x + 4) (x - 1) \ge 0$$

$$\Rightarrow x \in [-2,-1]$$

$$x \in (-\infty, -4] \cup [1, \infty)$$

Taking union

$$x \in (-\infty, -4] \cup [-2, -1] \cup [1, \infty)$$

Example: 25 If both the roots of the equation $x^2 - 6ax + 2 - 2a + 9a^2 = 0$ exceed 3, then

(2)
$$a > \frac{11}{9}$$

(3)
$$a > \frac{3}{2}$$

(4)
$$a < \frac{5}{2}$$

Solution:

The quadratic equation $f(x) = x^2 - 6ax + 2 - 2a + 9a^2 = 0$

will have real roots if D = $36a^2 - 4(2 - 2a + 9a^2) \ge 0$

$$\Rightarrow$$
 $-8(1-a) \ge 0$ or $a \ge 1$

...(2)

...(1)

The roots of (1) will exceed 3 if

$$\frac{-b}{2a} = -\left(\frac{-6a}{2}\right) = 3a > 3 \text{ or } a > 1$$

...(3)

and
$$f(3) = 9 - 18a + 2 - 2a + 9a^2 > 0$$

$$\Rightarrow$$
 9a² - 20a + 11 > 0

$$\Rightarrow$$
 (9a $-$ 11) (a $-$ 1) $>$ 0

$$\Rightarrow \left(a - \frac{11}{9}\right) (a - 1) > 0$$

$$\Rightarrow$$
 a < 1 or a > $\frac{11}{9}$

...(4)

Thus (2), (3) and (4) will hold simultaneously if $a > \frac{11}{9}$.

Example: 26

Find the value of k for which one root of the equation of $x^2 - (k + 1)x + k^2 + k - 8 = 0$ exceed 2 and other is smaller than 2.

Solution:

$$x^2 - (k + 1)x + k^2 + k - 8 = 0$$

$$a > 0$$
, hence $f(2) < 0 \implies$

$$4 - (k + 1) 2 + k^2 + k - 8 < 0$$

$$k^2 - k - 6 < 0$$

$$\Rightarrow$$
 $(k-3)(k+2)<0$

$$k \in (-2, 3)$$

Example: 27

If α , β are the roots of the quadratic equation

 $x^2 + 2(k-3)x + 9 = 0$ ($\alpha \neq \beta$). If α , $\beta \in (-6, 1)$ then find the values of k.

Solution:

$$x^2 + 2(k-3)x + 9 = 0$$

$$\alpha$$
, $\beta \in (-6, 1)$

Since leading coefficient is 1, hence

$$4(k-3)^2-4\times9\geq0$$

$$(k-6) k \ge 0$$

$$k \in (-\infty,0] \cup [6,\infty)$$

(ii)
$$f(-6) > 0$$

$$36-12(k-3)+9>0$$

$$36 + 36 - 12k + 9 > 0$$

12k < 81

$$k\!<\!\frac{27}{4}$$

(iii) f(1) > 0

$$1 + 2(k - 3) + 9 > 0$$

$$1 + 2k - 6 + 9 > 0$$

$$2k + 4 > 0$$

$$k > -2$$

(iv) $-6 < \frac{-b}{2a} < 1$

$$-6 < 3 - k < 1$$

Taking intersection of above four condition we get $k \in \left[6, \frac{27}{4}\right]$

BA/

Example: 28 Find all the values of k for which one root of the quadratic equation $(k-5)x^2 - 2kx + k - 4 = 0$ is

smaller than 1 and the other root exceed 2.

Solution: $(k-5)x^2 - 2kx + k - 4 = 0$

Case I

(i)
$$k - 5 > 0$$

(ii)
$$f(1) < 0$$

$$(k-5)-2k+k-4<0$$

(iii)
$$f(2) < 0$$

$$4(k-5)-4k+k-4<0$$

$$k - 24 < 0$$

$$k \in (5, 24)$$

Case II:

(i) k - 5 < 0

(ii) f(1) > 0

-9 > 0 that is not possible.

Hence solution is $k \in (5, 24)$.

