Chapter

Basic Mathematics

TOPIC WISE QUESTIONS

TRIGONOMETRY

- Q.1 Change radian into degree -
 - (i) $\pi/4$
- (ii) $5\pi/6$
- (iii) $7\pi/2$
- (v) $2\pi/3$ (vi) $3\pi/4$
- Q.2 Change degree into radian -
 - (i) 160°
- (ii) 135°
- (iii) 75°
- (iv) 65°

(iv) $3\pi/5$

- (v) 225°
- (vi) 250°
- (vii) 310°
- Find the value of following Q.3
 - (i) sin 15°
- (ii) cos 15°
- (iii) tan 15°
- (iv) sin 53°
- (v) cos 53°
- (vi) tan 37°
- (vii) tan 53°
- (viii) sin 53° cos 37°
- Q.4 Calculate the value of following :-
 - (i) <u>sin13</u>5° cos 120°
- (ii) $\frac{\sin 120^{\circ}}{\cos 150^{\circ}}$
- (iii) sin 105°
- (iv) sin 300°
- (v) cos 240°
- $(vi) sin^2(20^\circ) + sin^2 (70^\circ)$
- (vii) sin 225°
- (viii) sin 315°
- (ix) cos 270°
- Q.5 Calculate the value of following:-
 - (i) 2 sin 15° cos 15°
- (ii) sin 22.5° cos 22.5°
- (iii) tan 75°
- (iv) sin² 22.5°
- Calculate the value of following:-**Q.6**
 - (i) $\sin\left(\frac{3\pi}{4}\right)$
- (ii) $tan\left(\frac{7\pi}{6}\right)$
- (iii) $\cos\left(\frac{5\pi}{4}\right)$ (iv) $\sin\left(\frac{2\pi}{3}\right)$
- Calculate the value of following:-Q.7
 - (i) If $\tan \theta = \frac{5}{12}$; find $\sin \theta$
 - (ii) If $4 \sin^2 \theta = 1$ find θ . {where θ (0, π)}

(iii) find $sin\theta$.

APPROXINATIONS

- Use the approximation $(1 + x)^n \approx 1 + nx$, $|x| \ll 1$ **Q.8**
 - 1, to find approximate value for $\sqrt{99}$
 - (1)9.05
- (2)9.95
- (3) 8.85
- (4)7.91
- Find approximate value for $\frac{1}{1.01}$ Q.9
 - (1)0.99
- (2) 1.02
- (3) 0.90
- (4) 1.99
- Q.10 Use the small angle approximations to find approximate values for tan 4°.
 - (1) 0.05
- (2) 0.26
- (3) 0.07
- (4) 0.69

DIFFERENTIATION

Q.11 Find the derivative of given functions w.r.t. corresponding independent variable.

(i)
$$y = x^3$$

(ii)
$$y = \frac{1}{x^2}$$

- (iii) $y = x^2 + x + 8$
- (iv) $y = 2 \tan x$
- $(v) y = 5 \sin x$
- (vi) $y = x^2 + \sin x$
- (vii) $y = \tan x + \cot x$ (viii) Example $\sin x$
- (ix) x sin x
- (x) $y = e^x \ln x$
- (xi) $y = e^x \tan x$
- (xii) $y = (x^2 + 3x + 2) \cdot (2x^4 5)$
- (xiii) $y = \sin x \cos x$ (xiv) $s = (t^2 + 1)(t^2 1)$
- Q.12 Find derivative of given functions w.r.t. x

(i)
$$y = \frac{\sin x}{\cos x}$$

(ii)
$$y = \frac{x^2 + 1}{x}$$

(iii)
$$y = \frac{\sin x}{x^2}$$

(iv)
$$y = \frac{x^2}{2x+1}$$

(v)
$$y = \frac{\cos x}{x}$$

(vi)
$$y = \sin 2x$$

(vii)
$$y = \sin^2 x$$

(vii)
$$y = \sin^2 x$$

(viii)
$$y = \sin 5x$$

(ix)
$$y = 2 \sin (ax + b)$$
 where a and b constants

(x)
$$y = (2x + 1)^5$$
 (xi) $y = (4 - 3x)^9$

(xii)
$$y = \sin^2(3 - 4x)$$
 (xiii) $y = \sqrt{4x^2 + 2}$

(xv)
$$y = \frac{1}{\sqrt{2^2 + 2^2 + 2^2}}$$

(xvi)
$$y = \frac{1}{\sqrt{7x-2}}$$
 (xvii) $x = 2y^2 + 2$

(xvii)
$$x = 2y^2 + 2$$

(xviii)
$$x = 4 \sin y + 6$$
 (xix) $x = 4 \ln y + 6$

- Q.13 Find the first derivative & second derivative of functions w.r.t. corresponding given independent variable.
 - (i) $y = \sin x$
- (ii) $r = 2\theta^2$
- (iii) y = lnx
- (iv) y = $6x^2 10x 5x^{-2}$

(v)
$$r = \frac{12}{\theta} - \frac{4}{\theta^3} + \frac{1}{\theta^4}$$
 (vi) $y = \sin x + \cos x$

(vi)
$$y = \sin x + \cos x$$

(vii)
$$y = lnx + e^x$$

- **Q.14** What is $\frac{dy}{dx}$ when x = 0
 - (i) $y = 6x^2 4x + 3$ (ii) $y = 3x^2 + 2x 5$ (iii) $y^2 + x^2 = 16$ (iv) $x = 4y^2 16$
- **Q.15** Find out f'(x) when f''(x) = 0
 - (i) $f(x) = 3x^3 18x^2 + 2x + 4$
 - (ii) $f(x) = x^3 3x^2 + 2x + 1$

(iii)
$$f(x) = \sqrt{x} + \frac{1}{\sqrt{x}}$$

(iv)
$$f(x) = x^2 + \frac{1}{x}$$

MAXIMA & MINIMA

- **Q.16** Find out minimum/maximum value of $y = 1 x^2$ also find out those points where value is minimum/maximum.
- **Q.17** Find out minimum/maximum value $y = 2x^3 - 15 x^2 + 36 x + 11$ also find out those points where value is minimum/maximum.
- Q.18 Determine the position where potantial energy wil be minimum if $U(x) = 100 - 50x + 1000x^2$ J.
- Q.19 Find out minimum/maximum value of $y = 4x - x^2 + 6$ also find out those points where value is minimum/maximum.

INTEGRATION OF ELEMENTRY FUNCTIONS

- Q.20 Find integrals of given functions
 - (i) (a) 2x (b) x²
- (c) $x^2 2x + 1$
- (ii) (a) $\frac{1}{v^2}$ (b) $\frac{5}{v^2}$ (c) $2 \frac{5}{v^2}$
- (iii) (a) $\frac{3}{2}\sqrt{x}$ (b) $\frac{3}{2\sqrt{x}}$ (c) $\sqrt{x} + \frac{1}{\sqrt{x}}$
- (iv) (a) $\frac{4}{3}\sqrt[3]{x}$ (b) $\frac{1}{3\sqrt[3]{x}}$ (c) $\sqrt[3]{x} + \frac{1}{\sqrt[3]{x}}$
- (v) $(1-x^2-3x^5)$ (vi) $\frac{4}{9}x^3+\frac{7}{y^2}+x$

- (vii) $x^8 + 9$ (viii) x^{-7} , (ix) $\frac{1}{2x}$

$$(xii) y = siii (3 - 4x) \qquad (xiii) y = \sqrt{4x^2 + 2}$$

$$(xiv) y = \sqrt{(2x+5)} \qquad (xv) y = \frac{1}{\sqrt{6x^2 + 2x + 3}}$$

$$(x) \int \left(\frac{1}{5} - \frac{2}{x^3} + 2x\right) dx \quad (xi) \int x^{-3} (x+1) dx$$

(xii)
$$\int \left(y^2 + \frac{1}{2y} - y^3 + 3 \right) dx$$

- Q.21 Find integrals of given functions
 - (i) 3 sin x
 - (ii) $\int (\sin t \cot + t^3 + 3t^2 + 4) dt$

(iii)
$$\int \left(\sin x + \frac{2}{x^3} - 5x^4 + e^{-2x} + 3 \right) dx$$

- (iv) $\int \sin 3x \, dx$ (v) $\int 7\sin \frac{\theta}{3} d\theta$
- (vi) $\int 3\cos 5\theta d\theta$
- Q.22 Definite integration

 - (i) $\int 5 dx$ (ii) $\int \frac{\pi}{2} d\theta$
 - (iii) $\int_{-2}^{4} \left(\frac{x}{2} + 3\right) dx$ (iv) $\int_{0}^{2\pi} \sin\theta d\theta$
 - (v) $\int_{0}^{1} e^{x} dx$ (vi) $\int_{0}^{2\pi} \theta d\theta$
 - (vii) $\int_{0}^{3\pi} x^2 dx$ (viii) $\int_{0}^{\pi} \cos x dx$
 - (ix) Evaluate: $\int_{-2x-3}^{1} dx$

CALCULATION OF AREA

- **Q.23** A particle is moving along x axis as $v = 2t + 3t^2 +$ 2 here v is velocity and t is time in second then find average velocity when particle moves t = 0to t = 5 second.
 - (1)25
- (2)40
- (3)32
- (4)30

- **Q.24** Current is flowing in conductor as $i = 6t + 9t^2$ here t is time in second and i is current then find average current in conductor t = 0 to t = 10 sec.
 - (1) 50 A (2) 330 A (3) 200 A (4) 420 A

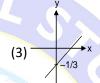
CO-ORDINATE GEOMETRY

- **Q.25** Write an equation for (a) the vertical line and (b) the horizontal line passing through the given point.
 - (i)(2,3)
- (ii) (0,0) (iii) (-4,0) (iv) (0,b)
- Q.26 Write an equation for the line determined by the given point and slope.
 - (i) (1, 1), m = 1
- (ii) (1, -1), m = -1
- (iii) (-1, 1) m = 1
- (iv) (-1, 1), m = -1

- (v) (0, b), m = 2
- (vi) (a, 0), m = -2
- **Q.27** Write the equation of line:
 - (i) having slope 2 and passing through (1, 3)
 - (ii) having slope -1 and passing through (2, 1)
- Q.28 Find an equation for the line determined by the given points

 - (i) (1, 1), (2, 1) (ii) (1, 1), (1, 2)
 - (iii) $(T, 0), (0, F_0) (T \neq 0, F_0 \neq 0)$

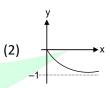
 - (iv) (1, 2), (4, 3) (v) (-1, 4), (2, 6)
- Q.29 Write an equation for the line with the given slope and y-intercept.
 - (i) m = -1, c = 2
- (ii) m = 1, c = $\sqrt{2}$
- (iii) $m = -\frac{1}{2}c = -3$
- Q.30 Find the slope and y-intercept of the line.
 - (i) y = 3x + 5
- (ii) x + y = 2
- (iii) x 2y = 4 (iv) 4x 3y = 12
- (v) $\frac{x}{3} + \frac{y}{4} = 1$ (vi) $\frac{x}{2} \frac{y}{3} = -1$
- Q.31 Write the equation of line:
 - (i) having x intercept 3 and y intercept 2.
 - (ii) having x intercept -2 and y intercept 2.
- **Q.32** Find the angle of inclination of the given line.
 - (i) y = x + 2
- (ii) $x + \sqrt{3}y = 3$
- (iii) 4x + 3y = 12
- Q.33 Find the line through the given point with the given angle of inclination.
 - (i) $(1, 4) \phi = 60^{\circ}$
- (ii) (-1, -1), $\phi = 135^{\circ}$
- (iii) $(-2, 3) \phi = 90^{\circ}$ (iv) $(3, -2) \phi = 0^{\circ}$

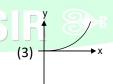

- Q.34 Find the center and radius of the circle and plot it.
 - (i) $x^2 + y^2 + 4x 6y = 12$
 - (ii) $y^2 + x^2 = 4$
 - (iii) $(x-3)^2 + (y-2)^2 = 1$

GRAPHS

Q.35 Correct graph of 3x + 4y + 1 = 0 is :

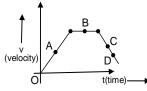
Q.36 Graph of y = 2x - 3 is:





Q.37 Graph of $y = 1 - e^{-x}$ is best represent by (for x > 0):

Q.38 Which of the following graphs has positive slope (m) and negative intercept (c) on y-axis?



BASIC MATHEMATICS

Q.39 The slope of v - t is zero at point :

(1) A

(2) B

(3)C

(4) D

QUADRATIC EQUATION RATIO & PERCENTAGE

Q.40 Find root of given quadratic equations. $x^2 - 12x + 35 = 0$

(1)7,5

(2)2,3

(3)4,6

(4) 0, 1

Q.41 Find sum of roots and multiplication of root of given equations. $x^2 - 5x + 12 = 0$

(1) 2, 12 (2) 5, 12 (3) 7, 12 (4) 4, 11

Q.42 A particle has momentum is p if its momentum increased by 20% then find % increase in kinetic energy.

(1) 55%

- (2) 44 %
- (3) 46%
- (4) 52%
- **Q.43** A charge particle moving perpendicular to magnetic field and force on particle is F = qvB (here q is charge in coulomb and v is velocity in m/s and B is magnetic field in web.) if velocity of particle decrease 10% then find % change in force on change particle.
 - (1) 10% increase
- (2) 10 % decrease
- (3) 25 % increase
- (4) 15 % increase

Q.44 If $\frac{p}{n} = \frac{39}{17}$ then find

(i) $\frac{p+q}{p-a}$ (ii) $\frac{p+q}{a}$ (iii) $\frac{p-q}{q}$

(1) (i) $\frac{28}{11}$ (ii) $\frac{56}{17}$ (iii) $\frac{22}{11}$

(2) (i) $\frac{7}{11}$ (ii) $\frac{5}{9}$ (iii) $\frac{3}{7}$

(3) (i) $\frac{7}{12}$ (ii) $\frac{3}{9}$ (iii) $\frac{12}{7}$

(4) (i) $\frac{5}{12}$ (ii) $\frac{4}{9}$ (iii) $\frac{7}{12}$

DEFINITION. TYPES OF VECTOR & ANGLE BETWEEN THE VECTORS

- Q.45 Which one of the following statement is false
 - (1) Mass, speed and energy are scalars
 - (2) Momentum, force and torque are vectors
 - (3) Distance is a scalar while displacement is a vector
 - (4) A vector has only magnitude where as a scalar has both magnitude and direction

Q.46 If is a unit vector in the direction of the vector \vec{A} , then :-

(1) $\hat{n} = \frac{A}{|\vec{A}|}$

(2) $\hat{n} = \vec{A} | \vec{A} |$

(3) $\hat{n} = \frac{|\vec{A}|}{\vec{A}}$

- Q.47 Electro motive force (EMF) is:
 - (1) scalar
 - (2) vector
 - (3) neither scalar nor vector
 - (4) none of these
- Q.48 Which of the following physical quantities is an axial vector?

(1) displacement

(2) force

(3) velocity

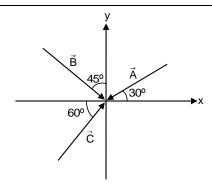
(4) torque

- Q.49 The forces, which meet at one point but their lines of action do not lie in one plane, are called:
 - (1) non-coplanar and non-concurrent forces
 - (2) coplanar and non-concurrent forces
 - (3) non-coplanar and concurrent forces
 - (4) coplanar and concurrent forces
- Q.50 A vector is not changed if
 - (1) it is displaced parallel to itself
 - (2) it is rotated through an arbitrary angle
 - (3) it is cross-multiplied by a unit vector
 - (4) it is multiplied by an arbitrary scalar.
- **Q.51** The unit vector along $\hat{i} + \hat{j}$ is:

(1) \hat{k} (2) $\hat{i} + \hat{j}$ (3) $\frac{\hat{i} + \hat{j}}{\sqrt{2}}$ (4) $\frac{\hat{i} + \hat{j}}{2}$

Q.52 If a unit vector is represented by

$$0.5\hat{i} - 0.8\hat{j} + c\hat{k}$$


then the value of 'c' is:

(1)1

(2) $\sqrt{0.11}$ (3) $\sqrt{0.01}$ (4) $\sqrt{0.39}$

Comprehension 53 to 55

Vectors \vec{A} , \vec{B} and \vec{C} are shown in figure. Find angle between

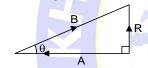
- **Q.53** \vec{A} and \vec{B}
 - (1) 105°
- (2) 110°
- (3) 115°
- (4) 120°

- **Q.54** \vec{A} and \vec{C}
 - (1) 120° (2) 150°
- (3) 175°
- (4) 190°

- $\mathbf{Q.55}$ $\vec{\mathsf{B}}$ and $\vec{\mathsf{C}}$
 - (1) 90°
- (2) 120°
- (3) 105°
- (4) 150°
- **Q.56** The forces, each numerically equal to 5 N, are acting as shown in the Figure. Find the angle between forces?

- (1) 105°
- (2) 110° (3) 115°
 - (4) 120°
- **Q.57** The vector joining the points A (1, 1, -1) and B (2, -3, 4) & pointing from A to B is -
 - $(1) \hat{i} + 4\hat{j} 5\hat{k}$ (2) $\hat{i} + 4\hat{j} + 5\hat{k}$
 - (3) $\hat{i} 4\hat{j} + 5\hat{k}$
- $(4) \hat{i} 4\hat{i} 5\hat{k}$
- **Q.58** If $\vec{A} = 3\hat{i} + 4\hat{j}$ then find \hat{A}
 - (1) $\frac{3\hat{i}+4\hat{j}}{5}$

ADDITION & SUBTRACTION OF VECTORS


- **Q.59** Given: $\vec{A} = 2\hat{i} + 3\hat{j}$ and $\vec{B} = 5\hat{i} 6\hat{j}$. The magnitude of $\vec{A} + \vec{B}$ is
 - (1) 4 units
- (2) 10 units
- (3) $\sqrt{58}$ units
- (4) $\sqrt{32}$ units
- **Q.60** Given: $\vec{A} = 2\hat{i} \hat{j} + 2\hat{k}$ and $\vec{B} = -\hat{i} \hat{j} + \hat{k}$. The unit vector of $\vec{A} - \vec{B}$ is

- (4) $\frac{-3\hat{i} \hat{k}}{\sqrt{10}}$
- **Q.61** Two vectors \vec{A} and \vec{B} lie in a plane, another vector \vec{C} lies outside this plane, then the resultant of these three vectors i.e. $\vec{A} + \vec{B} + \vec{C}$:
 - (1) Can be zero
 - (2) Cannot be zero
 - (3) Lies in the plane containing $\vec{A} \& \vec{B}$
 - (4) Lies in the plane containing $\vec{B} \& \vec{C}$
- **Q.62** Given that $\vec{P} + \vec{Q} = \vec{P} \vec{Q}$. This can be true when:
 - (1) P = Q
 - (2) $\vec{Q} = \vec{0}$
 - (3) Neither P nor Q is a null vector
 - (4) P is perpendicular to Q
- **Q.63** The resultant of \vec{A} and \vec{B} makes an angle α with \vec{A} and β with \vec{B} , then:
 - (1) $\alpha < \beta$
- (2) $\alpha < \beta$ if A < B
- (3) $\alpha < \beta$ if A > B
- (4) $\alpha < \beta$ if A = B
- Q.64 The minimum number of vectors of equal magnitude required to produce a zero resultant is:
 - (1) 2
- (2)3
- (3)4
- (4) more than 4
- Q.65 How many minimum number of coplanar vectors having different magnitudes can be added to give zero resultant:-
 - (1) 2
- (2)3
- (3)4
- (4)5
- Q.66 How many minimum number of vectors in different planes can be added to give zero resultant:-
 - (1) 2
- (2)3
- (3)4
- (4)5
- Q.67 The vector sum of the forces of 10 newton and 6 newton can be:
 - (1) 2 N
- (2) 8 N
- (3) 18 N
- (4) 20 N
- Q.68 Vector sum of two forces of 10N and 6N cannot be:
 - (1) 4 N
 - (2) 8 N
- (3) 12 N
- (4) 2 N
- Q.69 Which of the following pair of forces will never give resultant force of 2 N:
 - (1) 2 N and 2 N
- (2) 1 N and 1 N
- (3) 1 N and 3 N
- (4) 1 N and 4 N
- **Q.70** If $\vec{A} + \vec{B}$ is a unit vector along x-axis and $\vec{A} = \hat{i} - \hat{j} + \hat{k}$, then what is \vec{B} ?

BASIC MATHEMATICS

- (1) $\hat{j} + \hat{k}$
- (2) $\hat{j} \hat{k}$
- (3) $\hat{i} + \hat{j} + \hat{k}$
- (4) $\hat{i} + \hat{j} \hat{k}$
- Q.71 Force 3 N, 4 N and 12 N act at a point in mutually perpendicular directions. The magnitude of the resultant force is:

 - (1) 19 N (2) 13 N
- (3) 11 N
- (4) 5 N
- **Q.72** If vectors \vec{P} , \vec{Q} and \vec{R} have magnitudes 5, 12 and 13 units and $\vec{P} + \vec{Q} = \vec{R}$, the angle between \vec{Q} and \vec{R} is:
 - (1) $\cos^{-1}\left(\frac{5}{12}\right)$ (2) $\cos^{-1}\left(\frac{5}{13}\right)$
 - (3) $\cos^{-1}\left(\frac{12}{13}\right)$ (4) $\cos^{-1}\left(\frac{2}{13}\right)$
- **Q.73** In vector diagram shown in figure where (\vec{R}) is the resultant of vectors (\vec{A}) and (\vec{B}). If R = $\frac{\vec{B}}{\sqrt{2}}$, the value of angle θ is :

- $(1) 30^{\circ}$
- $(2) 45^{\circ}$
- $(3) 60^{\circ}$
- $(4)75^{\circ}$
- **Q.74** Two vectors \vec{A} and \vec{B} are such that $\vec{A} + \vec{B} = \vec{C}$ and $A^2 + B^2 = C^2$. Which of the following statements, is correct: -
 - (1) \vec{A} is parallel to \vec{B}
 - (2) \vec{A} is anti-parallel to \vec{B}
 - (3) \vec{A} is perpendicular to \vec{B}
 - (4) A and B are equal in magnitude
- **Q.75** The resultant of \vec{A} and \vec{B} is perpendicular to \vec{A} . What is the angle between \vec{A} and \vec{B} ?

 - (1) $\cos^{-1}\left(\frac{A}{B}\right)$ (2) $\cos^{-1}\left(-\frac{A}{B}\right)$
 - (3) $\sin^{-1}\left(\frac{A}{B}\right)$ (4) $\sin^{-1}\left(-\frac{A}{B}\right)$
- **Q.76** When two vector \vec{a} and \vec{b} are added, the magnitude of the resultant vector is always
 - (1) greater than (a + b)
 - (2) less than or equal to (a + b)
 - (3) less than (a + b)
 - (4) equal to (a + b)

- Q.77 Six forces, 9.81 N each, acting at a point are coplanar. If the angles between neighboring forces are equal, then the resultant is
 - (1) 0 N
- (2) 9.81 N
- (3) 2 (9.81) N
- (4) 3 (9.81) N.
- Q.78 Rain is falling vertically downwards with a speed 5 m/s. If unit vector along upward is defined as j, represent velocity of rain in vector form.
 - (1) 5 î
- $(2) 5\hat{i}$ $(3) 8\hat{i}$
- (4) 8î
- Q.79 Two force and are acting at right angles to each other, find their resultant?
 - (1) $\sqrt{F_1^2 F_2^2}$ (2) $\sqrt{F_1^2 + F_2^2}$ (3) $\sqrt{F_1^3 F_2^3}$ (4) $\sqrt{F_1^3 + F_2^3}$
- **Q.80** Two force of $\vec{F}_1 = 500 \text{ N}$ due east and $\vec{F}_2 = 250 \text{ N}$ due north, Find $\vec{F}_2 - \vec{F}_1$?
 - (1) 250 $\sqrt{5}$ N, tan⁻¹(2) W of N
 - (2) 250 $\sqrt{5}$ N, tan^{-1} (2) N of W
 - (3) 250 N, tan⁻¹ (2) W of S
 - (4) 250 N, tan⁻¹ (2) S of W
- **Q.81** Two vectors \vec{a} and \vec{b} inclined at an angle θ w.r.t. each other have a resultant c which makes an angle β with \vec{a} . If the directions of \vec{a} and b are interchanged, then the resultant will have the same
 - (1) magnitude
 - (2) direction
 - (3) magnitude as well as direction
 - (4) neither magnitude nor direction.
- Q.82 A set of vectors taken in a given order gives a closed polygon. Then the resultant of these vectors is a
 - (1) scalar quantity
- (2) pseudo vector
- (3) unit vector
- (4) null vector
- Q.83 The vector sum of two force P and Q is minimum when the angle θ between their positive directions, is

- (1) $\frac{\pi}{4}$ (2) $\frac{\pi}{3}$ (3) $\frac{\pi}{2}$ (4) π .
- **Q.84** The vector sum of two vectors \vec{A} and \vec{B} is maximum, then the angle θ between two vectors is -
 - (1) 0°
- (2) 30°
- (3) 45°
- (4) 60°
- **Q.85** Given: $\vec{C} = \vec{A} + \vec{B}$. Also, the magnitude of \vec{A} , \vec{B} and \vec{C} are 12, 5 and 13 units respectively. The angle between \vec{A} and \vec{B} is

PHYSICS

- $(1) 0^{\circ}$
- (2) $\frac{\pi}{4}$ (3) $\frac{\pi}{2}$ (4) π .
- Q.86 The sum and difference of two perpendicular vectors of equal lengths are
 - (1) of equal lengths and have an acute angle between them
 - (2) of equal length and have an obtuse angle between them
 - (3) also perpendicular to each other and are of different lengths
 - (4) also perpendicular to each other and are of equal lengths.
- **Q.87** Two forces, each numerically equal to 10 dyne are acting as shown in the following figure. Their resultant is:

- (1) 10 dyne
- (2) 20 dyne
- (3) $10\sqrt{3}$ dyne
- (4) 5 dyne
- **Q.88** What is the angle between \vec{A} and the resultant of $(\vec{A} + \vec{B})$ and $(\vec{A} - \vec{B})$?

 - (1) 0° (2) $\tan^{-1} \left(\frac{A}{B} \right)$

 - (3) $\tan^{-1}\left(\frac{B}{\Delta}\right)$ (4) $\tan^{-1}\left(\frac{A-B}{\Delta+B}\right)$

DOT PRODUCT & CROSSPRODUCT

- **Q.89** The angle that the vector $\vec{A} = 2\hat{i} + 3\hat{j}$ makes with v-axis is:
 - (1) tan⁻¹ (3/2)
- (2) tan-1 (2/3)
- (3) sin⁻¹ (2/3)
- (4) cos⁻¹ (3/2)
- **Q.90** A vector perpendicular to $(4\hat{i} 3\hat{j})$ may be :
 - $(1) 4\hat{i} + 3\hat{j}$
- (2) 7k
- (3) 6î
- $(4) 3\hat{i} 4\hat{i}$
- **Q.91** The vector $\vec{B} = 5\hat{i} + 2\hat{j} S\hat{k}$ is perpendicular to the vector $\vec{A} = 3\hat{i} + \hat{j} + 2\hat{k}$ if S =
 - (1) 1
- (2)4.7
- (3) 6.3
- (4) 8.5
- Q.92 The angle between two vectors given by $(6\hat{i}+6\hat{j}-3\hat{k})$ and $(7\hat{i}+4\hat{j}+4\hat{k})$ is:

- (1) $\cos^{-1}\left(\frac{1}{2}\right)$ (2) $\cos^{-1}\left(\frac{1}{3}\right)$
- (3) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$ (4) $\cos^{-1}\left(\frac{2}{3}\right)$
- **Q.93** If $\vec{A} + \vec{B} = \vec{C}$ and $\vec{A} + \vec{B} = \vec{C}$, then the angle between \vec{A} and \vec{B} is:
 - (1)0
- (2) $\pi / 4$
- (3) π / 2
- $(4) \pi$
- Q.94 The angle between the two vectors $\vec{A} = 3\hat{i} + 4\hat{j} + 5\hat{k}$ and $\vec{B} = 3\hat{i} + 4\hat{j} - 5\hat{k}$ will be:
 - (1) zero
- (2) 180°
- (3) 90°
- (4) 45°
- **Q.95** If $\vec{P}.\vec{Q} = PQ$, then angle between \vec{P} and \vec{Q} is:
 - (1) 0°
- (2) 30°
- (3) 45°
- (4) 60°
- **Q.96** The magnitudes of vectors \vec{A} , \vec{B} and \vec{C} are respectively 12, 5 and 13 units and $\vec{A} + \vec{B} = \vec{C}$, then the angle between \vec{A} and \vec{B} is:
 - (1)0
- (2) 45°
- $(3) \pi / 2$
- $(4) \pi$
- Q.97 Area of a parallelogram, whose diagonals are $3\hat{i} + \hat{j} - 2\hat{k}$ and $\hat{i} - 3\hat{j} + 4\hat{k}$ will be:
 - $(1) \sqrt{95}$
- (2) √99
- $(3) \sqrt{105}$
- $(4) \sqrt{100}$
- Q.98 A vector A points vertically downward & B points towards east, then the vector product $\vec{A} \times \vec{B}$ is
 - (1) along west
- (2) along east
- (3) zero
- (4) along south
- **Q.99** If \hat{i} , \hat{j} and \hat{k} are unit vectors along X, Y & Z axis respectively, then tick the wrong statement:
 - (1) $\hat{i} \cdot \hat{i} = 1$
- $(2) \hat{i} \times \hat{j} = \hat{k}$
- (3) $\hat{i} \cdot \hat{i} = 0$
- (4) $\hat{i} \times \hat{k} = -\hat{i}$
- **Q.100** Two vectors \vec{P} and \vec{Q} are inclined to each other at angle θ . Which of the following is the unit vector perpendicular to \vec{P} and \vec{Q} ?
 - $(1) \frac{\vec{P} \times \vec{Q}}{\vec{P} \cdot \vec{Q}}$

- (3) $\frac{\hat{P} \times \hat{Q}}{PO \sin \theta}$ (4) $\frac{\hat{P} \times \hat{Q}}{PO \sin \theta}$
- Q.101 The magnitude of the vector product of two vectors \vec{A} and \vec{B} may not be:

BASIC MATHEMATICS

- (1) Greater than AB (2) Less than AB
- (3) Equal to AB
- (4) Equal to zero
- **Q.102** If $\vec{P} \times \vec{Q} = \vec{R}$, then which of the following statements is not true:
 - (1) R⊥P
- (2) R⊥Q
- (3) $\vec{R} \perp (\vec{P} + \vec{Q})$
- (4) $\vec{R} \perp (\vec{P} \times \vec{Q})$
- Q.103 Which of the following vector identities is false?
 - (1) $\vec{P} + \vec{Q} = \vec{Q} + \vec{P}$
- (2) $\vec{P} + \vec{Q} = \vec{Q} \times \vec{P}$
- (3) $\vec{P} \cdot \vec{Q} = \vec{Q} \cdot \vec{P}$
- (4) $\vec{P} \times \vec{Q} \neq \vec{Q} \times \vec{P}$
- **Q.104** If the vectors $(\hat{i} + \hat{j} + \hat{k})$ and $3\hat{i}$ form two sides of a triangle, then area of the triangle is:
 - (1) $\sqrt{3}$ unit
- (2) $2\sqrt{3}$ unit
- (3) $\frac{3}{\sqrt{2}}$ unit (4) $3\sqrt{2}$ unit
- **Q.105** What is the value of $(\vec{A} + \vec{B}) \cdot (\vec{A} \times \vec{B})$?
- (2) $A^2 B^2$
- (3) $A^2 + B^2 + 2AB$ (4) none of these
- **Q.106** If $\vec{A} \times \vec{B} = \vec{0}$ and $\vec{B} \times \vec{C} = \vec{0}$, then the angle between \vec{A} and \vec{C} may be:
 - (1) zero
- (2) $\frac{\pi}{4}$
- (3) $\frac{\pi}{2}$
- (4) none of these
- **Q.107** Find the magnitude of $3\hat{i} + 2\hat{j} + \hat{k}$?

- (1) $\sqrt{14}$ (2) $\sqrt{13}$ (3) $\sqrt{12}$ (4) $\sqrt{10}$
- Q.108 Three non zero vectors A, B & C satisfy the relation \vec{A} . \vec{B} = 0 & \vec{A} . \vec{C} = 0. Then \vec{A} can be parallel to:
 - (1) B
- (2) Ĉ
- (3) B.C
- $(4)\vec{B}\times\vec{C}$
- **Q.109** If $\hat{n} = a\hat{i} + b\hat{j}$ is perpendicular to the vector,
 - $(\hat{i} \hat{j})$, then the value of a and b may be :
 - (1) 1, 0
- (2) -2, 0
- (3) 3, 0
- $(4) \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$

- **Q.110** For a body, angular velocity $(\vec{\omega}) = \hat{i} 2\hat{j} + 3\hat{k}$ and radius vector $(\vec{r}) = \hat{i} + \hat{i} + \hat{k}$, then its velocity is:
 - $(1) 5\hat{i} + 2\hat{j} + 3\hat{k}$ $(2) 5\hat{i} + 2\hat{j} 3\hat{k}$

 - $(3) 5\hat{i} 2\hat{j} + 3\hat{k}$ $(4) 5\hat{i} 2\hat{j} 3\hat{k}$

RESOLTUION OF VECTOR, PROJECTION OF VECTOR, MISC

- **Q.111** What is the projection of \vec{A} on \vec{B} ?
 - (1) A.B
- (2) A.B
- (3) B.A
- (4) Â.B
- Q.112 What is the maximum number of components into which a vector can be split?
 - (1) 2
- (2) 3
- (3)4
- (4) ∞
- Q.113 What is the maximum number of rectangular components into which a vector can be split in its own plane?
 - (1) 2
- (2)3
- (3)4
- $(4) \infty$
- Q.114 What is the maximum number of rectangular components into which a vector can be split in space?
 - (1)2
- (2)3
- (3)4
- (4) ∞
- **Q.115** Vector makes angle α , β and γ with the X, Y and Z axes respectively.

Then $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$

- (1)0
- (2) 1
- (3) 2
- **Q.116** The direction cosines of a vector $\hat{i} + \hat{j} + \sqrt{2}\hat{k}$ are:
- (1) $\frac{1}{2}$, $\frac{1}{2}$, 1 (2) $\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$
 - (3) $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{\sqrt{2}}$ (4) None of these
- Q.117 What is the x component of a 25 m displacement at an angle of 210° with the x-axis (anti clockwise)?
 - (1) 25 cos 30°
- (2) 25 sin 30°
- $(3) 25 \cos 30^{\circ}$
- $(4) 25 \sin 30^{\circ}$
- Q.118 One of the rectangular components of a velocity of 60 km h⁻¹ is 30 km h⁻¹. Find other rectangular component?
 - (1) $20\sqrt{3}$ km h⁻¹ (2) $30\sqrt{2}$ km h⁻¹
- - (3) $20\sqrt{2} \text{ km } \text{h}^{-1}$ (4) $30\sqrt{3} \text{ km } \text{h}^{-1}$

>>>>>>>

ANSWER KEY

TOPIC WISE QUESTIONS

Q.1 Change radian to degree

- (i) 45°
- (ii) 150°
- (iii) 630°
- (iv) 108°

(v) 120°

(vi) 135°

Change degree to radian

- (i) $8\pi/9$
- (ii) $3\pi/4$ (iii) $5\pi/12$ (iv) $13\pi/36$
- (vi) $25\pi/18$ (vii) $31\pi/18$

Q.3 (i) $\frac{\sqrt{3}-1}{2\sqrt{2}}$ (ii) $\frac{\sqrt{3}+1}{2\sqrt{2}}$ (iii) $\frac{\sqrt{3}-1}{\sqrt{3}+1}$

(iii)
$$\frac{\sqrt{3}-1}{\sqrt{3}+1}$$

(iv)
$$\frac{3}{4}$$

Q.4 (i)
$$-\sqrt{2}$$

Q.4 (i)
$$-\sqrt{2}$$
 (ii) -1 (iii) $\frac{\sqrt{3}+1}{2\sqrt{2}}$

(iv)
$$-\frac{\sqrt{3}}{2}$$

$(v) - \frac{1}{2}$ (vi) 1 $(vii) - \frac{1}{\sqrt{2}}$ $(viii) - \frac{1}{\sqrt{2}}$

- **Q.5** (i) $\frac{1}{2}$ (ii) $\frac{1}{2\sqrt{2}}$ (iii) $\frac{\sqrt{3}+1}{\sqrt{3}-1}$

(iv)

$$\frac{\sqrt{2}-1}{2\sqrt{2}}$$

- (iv) $\frac{3}{4}$ (vi) $\frac{3}{5}$ (vi) $\frac{4}{3}$ (viii) Zero $\frac{2\sqrt{2}}{\sqrt{2}}$ (ii) $\frac{1}{\sqrt{3}}$ (iii) $-\frac{1}{\sqrt{2}}$ (iv) $\frac{\sqrt{3}}{2}$

APPROXIMATION

Q.8 (2)

- Q.9
- (1) Q.10

DIFFERENTIATION

(ii)
$$\frac{-2}{x^3}$$

(iii)
$$\frac{dy}{dx} = 2x + 1$$
 (iv) $2 \sec^2 x$

(v)
$$\frac{dy}{dx} = 5 \cos x$$

(v)
$$\frac{dy}{dx} = 5 \cos x$$
 (vi) $\frac{dy}{dx} = 2x + \cos x$

(vii)
$$sec^2 x - cosec^2 x$$

(viii)
$$\frac{dy}{dx} = e^x$$
. $sinx + e^x cosx$

(xi)
$$\sin x + x \cos x$$
 (x) $e^x \ln x + \frac{e^x}{x}$

(xi)
$$e^x$$
 (tan x + sec^2x)

(xii)
$$\frac{dy}{dx} = (2x + 3)(2x^4 - 5) + (x^2 + 3x - 2)(8x^3)$$

(xiii)
$$\cos^2 x - \sin^2 x$$

(xiv)
$$\frac{ds}{dt} = (t^2 + 1)(2t) + (t^2 - 1)2t = 4t^3$$

Q.12 (i)
$$\sec^2 x$$
 (ii) $1 - \frac{1}{x^2}$

(ii)
$$1 - \frac{1}{v^2}$$

(iii)
$$\frac{x^2(\cos x) - \sin x(2x)}{x^4}$$

(iv)
$$\frac{dy}{dx} = \frac{(2x+1)2x-x^2\times2}{(2x+1)^2} \Rightarrow \frac{2x^2+2x}{(2x+1)^2}$$

(v)
$$\frac{dy}{dx} = \frac{x(-\sin x) - \cos x}{x^2}$$

- (vi) $2 \cos 2x$ (vii) $\sin 2x$ (viii) $5 \cos 5x$ (ix) $2a \cos (ax + b)$ (x) $10(2x + 1)^4$ (xi) $-27 (4 3x)^8$

(xii)
$$y = -4 \sin (6 - 8x)$$
 (xiii) $\frac{4x}{\sqrt{4x^2 + 2}}$

(xiv)
$$\frac{1}{\sqrt{2x+5}}$$

(xiv)
$$\frac{1}{\sqrt{2x+5}}$$
 (xv) $y = \frac{-(6x+1)}{(6x^2+2x+3)^{3/2}}$

$$(xvi) - \frac{7}{2(7x-2)^{3/2}}$$
 $(xvii) \frac{1}{2\sqrt{2x-4}}$

(xvii)
$$\frac{1}{2\sqrt{2x-4}}$$

(xviii)
$$\frac{dy}{dx} = \frac{1}{\sqrt{16 - (x - 6)^2}}$$

(xix)
$$\frac{e^{\frac{x-6}{4}}}{4}$$

Q.13 Find out first derivative & second derivative

(i) $\cos x$, $-\sin x$

(ii) 4θ , 4

(iii)
$$\frac{1}{x}$$
, $-\frac{1}{x^2}$

(iv)
$$12x - 10 + 10x^{-3}$$
. $12 - 30x^{-4}$

$$(v) \ -\frac{12}{\theta^2} + \frac{12}{\theta^4} - \frac{4}{\theta^5} \ ; \ \frac{24}{\theta^3} - \frac{48}{\theta^5} + \frac{20}{\theta^6}$$

(vi) $\cos x - \sin x$; $-\sin x - \cos x$

(vii)
$$\frac{1}{x} + e^x, -\frac{1}{x^2} + e^x$$

Q.14 (i) –4 (ii) 2 (iii) 0 (iv) $\frac{1}{16}$

(ii) -3

Q.15 (i) -34 (ii) -1 (iii) $\frac{1}{2\sqrt{3}}$

MAXIMA & MINIMA

Q.16 Max. value = 1 at x = 0

Q.17 Max. value = 39 at x = 2, Min. value = 38 at x = 3

Q.18 The minimum occurs at $x = 0.25 \times 10^{-1}$

Q.19 Max. value = 10 at x = 2

INTEGRATION

Q.20 (i) (a) $x^2 + c$

(b) $\frac{x^3}{2} + c$

(c)
$$\frac{x^3}{3} - x^2 + x + c$$

(ii) (a) $-\frac{1}{x} + C$ (b) $-\frac{5}{2x^2} + c$

(b)
$$-\frac{5}{2x^2} + c$$

(c)
$$2x + \frac{5}{x} + c$$

(iii) (a) $\sqrt{X^3} + c$ (b) $3\sqrt{x} + c$

(c)
$$\frac{2\sqrt{x^3}}{3} + 2\sqrt{x} + c$$

(iv) (a) $x^{4/3} + c$ (b) $\frac{x^{2/3}}{2} + c$

(c)
$$\frac{3x^{4/3}}{4} + \frac{3x^{2/3}}{2} + c$$

(v) $x - \frac{x^3}{2} - \frac{x^6}{2} + C$ (vi) $\frac{x^4}{2} - \frac{7}{2} + \frac{x^2}{2} + C$

(vii) $\frac{x^9}{9} + 9x + C$ (viii) $\frac{x^{-6}}{-6} + C$

(ix) $\frac{1}{3} \ell nx + c$ (x) $\frac{x}{5} + \frac{1}{x^2} + x^2 + C$

 $(xi) - \frac{1}{x} - \frac{1}{2x^2} + C$

(xii) $\frac{y^2}{3} + \frac{1}{2} \log_e y - \frac{y^4}{4} + 3y + C$

Q.21 (i) $-3 \cos x + c$

(ii) -cost - sint + $\frac{t^4}{4}$ + t^3 + 4t + C

(iii) $-\cos x - \frac{1}{x^2} - x^5 - \frac{e^{-2x}}{2} + 3x + C$

(iv) $-\frac{\cos 3x}{3} + C$

 $(v) - 21\cos\frac{\theta}{2} + C$ $(vi) \frac{3}{5}\sin 5\theta + c$

Q.22 (i) 15 (ii) $\frac{3\pi}{2}$ (iii) 21 (iv) 0

(v) e - 1 (vi) $\frac{3\pi^2}{2}$ (vii) $\frac{7}{2}$ (viii) 0

 $(ix) -\frac{1}{2}log 3$

CALCULATION OF AREA

Q.23 (3) 32

Q.24 (2) 330 A

COORDINATE GEOMATRY

Q.25 (i) (a) x = 2, (b) y = 3(ii) (a) x = 0, (b) y = 0(iii) (a) x = -4, (b) y = 0 (iv) (a) x = 0, (b) y = b

Q.26 (i) y = x(iii) y = x + 2 (ii) y + x = 0(iv) y + x = 0

(v) y = 2x + b

(vi) y + 2x = 2a

Q.27 (i) y = 2x + 1

(ii) x + y = 3

Q.28 (i) y = 1

(ii) x = 1

(iii) $y = (-F_0/T)x + F_0$

(iv) 3y = x + 5

(v) 3y = 2x + 14**Q.29** (i) y + x = 2

(ii) $y = x + \sqrt{2}$

(iii) y + = -3

Q.30 (i) m = 3, c = 5

(ii) m = -1, c = 2

(iii) $m = \frac{1}{2}$, c = -2 (iv) $m = \frac{4}{3}$, c = -4

PHYSICS

(v) m =
$$-\frac{4}{3}$$
, c = 4 (vi) m = $\frac{3}{2}$, c = 3

Q.31 (i) 2x + 3y = 6

(ii) y = x + 2

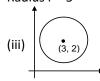
Q.32 (i) 45° (ii) 150°

(iii) 127°

Q.33 (i) $y = \sqrt{3}x + (4 - \sqrt{3})$ (ii) y + x + 2 = 0

(iii) x = -2

(iv) y = -2


Q.34 (i)

Center C(-2, 3), Radius r = 5

Center C(0, 0), Radius r = 2

Center C(3, 2), Radius r = 1

Que.	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49
Ans.	4	4	1	3	2	1	2	2	2	1	4	1	1	4	3
Que.	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
Ans.	1	3	2	1	2	3	4	3	1	3	1	2	2	3	1
Que.	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
Ans.	2	3	2	4	4	2	2	3	2	3	2	2	1	2	2
Que.	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94
Ans.	1	1	4	4	1	3	4	1	1	2	4	4	4	1	3
Que.	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109
Ans.	1	3	2	4	4	2	1	4	2	3	1	1	1	4	4
Que.	110	111	112	113	114	115	116	117	118	7					
Ans.	1	2	4	1	2	3	3	3	4	4		_/			