Chapter

Basic Mathematics

JEE-RANKER'S STUFF

SINGLE CORRECT QUESTIONS

- Q.1 Which of the following is correct.
 - (1) $\sin 1^{\circ} > \sin 1$
 - (2) sin1° < sin 1
 - (3) $\sin 1^{\circ} = \sin 1$
 - (4) $\sin 1^\circ = \frac{\pi}{180} \sin 1$
- Q.2 At what angle must the two forces (x + y) and (x - y) act so that the resultant may be $\sqrt{(x^2+y^2)}$?

(1)
$$\cos^{-1}\left[\frac{-(x^2+y^2)}{2(x^2-y^2)}\right]$$
 (2) $\cos^{-1}\left[\frac{-2(x^2-y^2)}{x^2+y^2}\right]$

(3)
$$\cos^{-1}\left[\frac{-(x^2+y^2)}{x^2-y^2}\right]$$
 (4) $\cos^{-1}\left[\frac{(x^2-y^2)}{x^2+y^2}\right]$

- Given that P = Q = R. If $\vec{P} + \vec{Q} = \vec{R}$ then the angle Q.3 between $\vec{P} \& \vec{R}$ is θ_1 . If $\vec{P} + \vec{Q} + \vec{R} = 0$ then the angle between $\vec{P} \& \vec{R}$ is θ_2 . What is the relation between θ_1 and θ_2 :
 - (1) $\theta_1 = \theta_2$
- (2) $\theta_1 = \frac{\theta_2}{2}$
- (3) $\theta_1 = 2\theta_2$
- (4) None of the above
- Q.4 Given that $\vec{A} + \vec{B} + \vec{C} = 0$. Out of these three vectors two are equal in magnitude and the magnitude of the third vector is $\sqrt{2}$ times as that of either of the two having equal magnitude. Then the angles between vectors are given by:
 - (1) 30°, 60°, 90°
- (2) 45°, 45°, 90°
- $(3) 45^{\circ}, 60^{\circ}, 90^{\circ}$
- (4) 90°, 135°, 135°
- Q.5 The resultant of two vectors P and Q is R. If Q is doubled then the new resultant vector is perpendicular to $'\vec{P}$ '. Then R is equal to :

- $(1)\left(\frac{P^2-Q^2}{2PQ}\right)$
- (2) Q
- (3) $\frac{P}{Q}$
- (4) $\frac{P+Q}{P-Q}$
- **Q.6** A vector of length ℓ is turned through the angle θ about its tail. What is the change in the position vector of its head?
 - (1) ℓ cos $(\theta/2)$
- (2) $2\ell \sin(\theta/2)$
- (3) $2\ell \cos(\theta/2)$ (4) $\ell \sin(\theta/2)$
- A line passes through (x_1, y_1) . This point bisects the segment of the line between the axes. Its equation is.

 - (1) $\frac{x}{x_1} + \frac{y}{y_1} = 2$ (2) $\frac{x}{x_1} + \frac{y}{y_1} = \frac{1}{2}$
 - (3) $\frac{x}{x_1} + \frac{y}{y_2} = 1$ (4) None
- Q.8 Acceleration of a particle in a magnetic field is given by $\vec{a} = \frac{q}{m} (\vec{V} \times \vec{B})$ if a charged particle is projected in a magnetic field $(2\hat{i} + 2\hat{j} + 2\hat{k})$ tesla, then acceleration of the particle at an instant is $(x\hat{i} + 2\hat{j} - 6\hat{k})$ m/s². value of x is
 - (1)4
- (2) 2
- (3)3
- (4)1
- Q.9 Select incorrect statement for three vectors $\vec{a} = -3\hat{i} + 2\hat{i} - \hat{k}$

$$\vec{b} = \hat{i} - 3\hat{j} + 5\hat{k}$$
 and $\vec{c} = 2\hat{i} + \hat{j} - 4\hat{k}$

- (1) Angle between vectors \vec{a} and \vec{b} is obtuse
- (2) Vector $\vec{a}, \vec{b}, \vec{c}$ form right angled triangle
- (3) Vector $\vec{a}, \vec{b}, \vec{c}$ form acute angled triangle
- (4) $\vec{a} \cdot \vec{b} = 0$ and $a^2 \neq c^2 = b^2$
- Q.10 The angle subtended at the centre of the circle of diameter 50 cm by an arc of 11 cm, is (in degree)

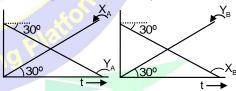
PHYSICS

- (1)22° 10 '
- (2)23° 10 '
- (3)20° 12 '
- (4)25° 12 '
- **Q.11** If \vec{a} and \vec{b} are two unit vector such that $\vec{a} + 2\vec{b}$ and $5\vec{a}-4\vec{b}$ are perpendicular to each other then angle between \vec{a} and \vec{b} is
 - (1) 45°
- $(2) 60^{\circ}$
- (3) $\cos^{-1}\left(\frac{1}{3}\right)$
- (4) $\cos^{-1}\left(\frac{2}{7}\right)$
- Q.12 Two vector A and B have equal magnitude. Then $\vec{A} + \vec{B}$ is perpendicular to
 - (1) $\vec{A} + 2\vec{B}$
- $(3) \ 3\vec{A} 2\vec{B}$
- (4) All of these
- **Q.13** If for two vector \vec{A} and \vec{B} , Sum $(\vec{A} + \vec{B})$ is perpendicular to the difference $(\vec{A} - \vec{B})$. The ratio of their magnitudes is
 - (1) 1
- (2) 2
- (3)3
- (4) None

- **Q.14** log₄18 is
 - $(1) 4 \log (2 \times 9)$
 - $(2) 9 \log (4 \times 2)$
 - (3) $\left(\frac{\log_{10} 3}{\log_{10} 2} + 1\right)$
 - $(4) \ \frac{2\log_{10} 3 + \log_{10} 2}{\log_{10} 2}$
- Q.15 The displacement vector of a particle is given as $\vec{S} = (t^2 - 2t + 12)\hat{i} + t^2\hat{j}$. The time after which velocity vector and acceleration vector becomes perpendicular to each other is equal to
 - (1) 1
- (2) 1/2
- (3) 1/3
- (4) 1/4
- **Q.16** If \vec{A} and \vec{B} are the components of \vec{C} , then:

- (1) B = C $\frac{\sqrt{3}}{2}$
- (2) A = $\frac{C}{\sqrt{2}}$
- (3) B = $\frac{C}{\sqrt{2}}$
- (4) A = $\frac{\sqrt{3}C}{2}$
- Q.17. If the angle between two forces increases, the magnitude of their resultant
 - (1) decreases
 - (2)increases
 - (3)remains unchanged

- (4) first decreases and then increases
- **Q.18** A vector $\overrightarrow{OA} = 3\hat{i}$ is rotated by an angle θ about its starting point O in x-z plane in clockwise sense, as seen by an observer located at a point on +y -axis. The new vector will be:
 - (1) $3 \cos \theta \hat{i} + 3 \sin \theta \hat{j}$ (2) $3 [\cos \theta \hat{i} \sin \theta \hat{k}]$
 - (3) $3[\cos\theta\hat{i} 3\sin\theta\hat{k}]$ (4) $3[\sin\theta\hat{i} + 3\cos\theta\hat{k}]$
- **Q.19** Let there be two vectors \vec{a} and \vec{b} such that $\vec{a} + \vec{b}$ is in same direction as $\vec{a} - \vec{b}$. Select the correct alternative.
 - (1) $\vec{a} \times \vec{b} = 0$
 - (2) $|\vec{a}| > |\vec{b}|$
 - (3) Both(1) & (2) must be simultaneously true
 - $(4) \vec{a} \cdot \vec{b} = 0$
- **Q.20** There are three vectors \vec{P} , \vec{Q} , and \vec{R} . The angle between \vec{P} and \vec{Q} is 60° and \vec{R} is perpendicular to the plane containing the vectors \vec{P} and \vec{Q} . Consider the following relations.


(a)
$$\vec{P} + \vec{Q} + \vec{R} = 0$$

(b)
$$\vec{P} \times \vec{Q} = \vec{R}$$

(c)
$$\vec{P} \times \vec{R} = \vec{Q}$$

The possible relations are

- (1) (a) & (b)
- (2) (a) & (c)
- (3) (b) & (c)
- (4) Only (b)
- Q.21 Displacement versus time plot for two particles A and B is shown below. XA XB and YA YB refger to x and y coordinates of particles A and B.

Velocity of particle A with respect to particle B is

- $(1) 0\hat{i} + 0\hat{j}$
- (2) Dependent of time t

(3)
$$\frac{2}{\sqrt{3}}\hat{i} - \frac{2}{\sqrt{3}}\hat{j}$$

(3)
$$\frac{2}{\sqrt{3}}\hat{i} - \frac{2}{\sqrt{3}}\hat{j}$$
 (4) $-\frac{2}{\sqrt{3}}\hat{i} + \frac{2}{\sqrt{3}}\hat{j}$

- **Q.22** If the mth term of an A.P. is $\frac{1}{2}$ and the nth term is
 - $\frac{1}{m}$ then sum to mn terms is –

 $(2)\frac{mn-1}{2}$

 $(4) \frac{mn-1}{2}$

- Q.23 If \vec{a} denotes a unit vector along an incident light \vec{b} a unit vector along refracted ray into a medium having refractive index ' μ ' (relative to first medium and \vec{c} is a unit vector normal to boundary of two media and directed towards first medium, then law of refraction is [$\sin \theta_1 = \mu \sin \theta_2$]
 - (1) $\vec{a} \cdot \vec{c} = x(\vec{b} \cdot \vec{c})$
- (2) $\vec{a} \times \vec{c} = x(\vec{c} \times \vec{b})$
- (3) $\vec{a} \times \vec{c} = x(\vec{b} \times \vec{c})$
- (4) $x(\vec{a}\times\vec{c}) = (\vec{b}\times\vec{c})$
- Q.24 The sum of the magnitudes of two forces acting at point is 18 and the magnitude of their resultant is 12. If the resultant is at 90° with the force of smaller magnitude, what are the magnitudes of forces?
 - (1) 12, 5
- (2) 14, 4
- (3) 5, 13
- (4) 10, 8
- Q.25 Three forces P, Q and R are acting on a particle in the plane, the angle between P and Q & Q and R are 150° and 120° respectively. Then for equilibrium, forces P, Q and R are in the ratio:
 - (1) 1:2:3
- (2) 1 : 2 : $\sqrt{3}$
- (3) 3 : 2 : 1
- (4) $\sqrt{3} : 2:1$
- Q.26 Following forces start acting on a particle at rest at the origin of the co-ordinate system simultaneously

$$\vec{F}_1 = -4\hat{i} - 5\hat{j} + 5\hat{k} ,$$

$$\vec{F}_2 = -5\hat{i} + 8\hat{j} + 6\hat{k}$$
, and

 $\vec{F}_3 = -3\hat{i} + 4\hat{j} - 7\hat{k}$ then the particle will move

- (1) In x-y plane
- (2) In y-z plane
- (3) In x-z plane
- (4) Along x-axis
- **Q.27** The vector that must be added to the vector $\hat{i} 3\hat{j} + 2\hat{k}$ and $3\hat{i} + 6\hat{j} 7\hat{k}$ so that the resultant vector is a unit vector along the y-axis is
 - (1) $4\hat{i} + 2\hat{i} + 5\hat{k}$
- (2) $-4\hat{i} 2\hat{j} + 5\hat{k}$
- (3) $3\hat{i} + 4\hat{j} + 5\hat{k}$
- (4) Null vector
- **Q.28** Let $\vec{A} = \hat{i}A\cos\theta + \hat{j}A\sin\theta$ be any vector. Another vector \vec{B} which is normal to A is
 - (1) $\hat{i}B\cos\theta + \hat{j}B\sin\theta$
 - (2) $\hat{i}B\sin\theta + \hat{i}B\cos\theta$
 - (3) $\hat{i}B\sin\theta \hat{j}B\cos\theta$

- (4) $\hat{i}B\cos\theta \hat{j}B\sin\theta$
- **Q.29** Which of the following sets of displacements might be capable of bringing a car to its returning point?
 - (1)5, 10, 30 and 50 km
 - (2)5, 9, 9 and 16 km
 - (3)40, 40, 90 and 200 km
 - (4)10, 20, 40 and 90 km

NUMERICAL VALUE TYPE QUESTIONS

- Q.30 If the resultant of two forces of magnitudes
 P and Q acting at a point at an angle of 60° is $\sqrt{7}$ Q, then P/Q is
- **Q.31** A particle is displaced from position $(2\hat{i}-\hat{j}+\hat{k})$ to another position $(3\hat{i}+2\hat{j}-2k)$ under the action of the force of $(2\hat{i}+\hat{j}-\hat{k})$. The work done by the force in an arbitrary unit is :
- Q.32 Vectors \vec{a} and \vec{b} are inclined at an angle $\theta = 120^{\circ}$. If $|\vec{a}| = 1$, $|\vec{b}| = 2$, then $[(\vec{a} + 3\vec{b}) + (3\vec{a} \vec{b})]^2 = 120^{\circ}$
- Q.33 A particle starts from rest with a uniform acceleration. Its displacement x after t seconds is given in metres by the relation $x = 5 + 6t + 7t^2$ Calculate the magnitude of its uniform acceleration
- Q.34 The mass of a body is 2.5 kg. It is in motion and its velocity υ after time t is $\upsilon=\frac{t^3}{3}+\frac{t^2}{2}+1$ Calculate the force acting on the body at the time t = 3 second.
- Q.35 The air is filled in a balloon and the volume of balloon increases gradually. Find the rate of increase of volume of balloon with radius when radius of balloon becomes 30 cm.
- **Q.36** A particle is at rest. It start rotation about a fixed point. Its angle of rotation (θ) with time (t) is given by the relation:

$$\theta = \frac{6t^3}{15} - \frac{t^2}{2}$$

PHYSICS

Where θ is in radian and t is seconds. Find the angular velocity and angular acceleration of particle at the end of 6 second.

Q.37 If the Displacement x of a particle (in metre) is related with time (in second) according to relation

 $x = 2t^3 - 3t^2 + 2t + 2$

find the position, velocity and acceleration of a particle in the end of 2 seconds.

Q.38 A particle starts from rest and its angular displacement (in rad) is given by $\theta = \frac{t^2}{20} + \frac{t}{5}$; calculate the angular velocity at the end of t = 4second.

STATEMENT TYPE QUESTIONS

Each of the following contains two statements. Read the statements and choose any one of the following four responses:

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- Statement-1 is True, Statement-2 is True; (B) Statement-2 is NOT a correct explanation for Statement-1
- Statement-1 is True, Statement-2 is False (C)
- Statement-1 is False, Statement-2 is True (D)
- Q.39 Statement -I : $\cos 10^\circ$ & $\cos(-10)^\circ$ both are positive & have same value

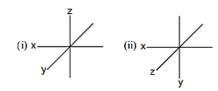
Statement-II : $\cos\theta = \cos(-\theta) \& 10^{\circ} \& (-10)^{\circ}$ both lie in IIIrd quadrant.

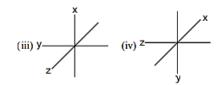
- (1) A
- (2) B
- (3) C (4) D
- Q.40 Statement-1: The minimum number of nonzero vectors of unequal magnitude required to produce zero resultant is three.

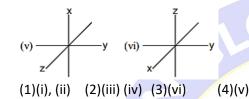
Statement-2: Three vectors of unequal magnitude which can be represented by the three sides of a triangle taken in order, produce zero resultant.

- (1) A
- (2) B
- (3) C
- (4) D
- **Q.41 Statement-1**: If three vectors \vec{A} , \vec{B} and \vec{C} satisfy the relation $\vec{A} \cdot \vec{B} = 0$ & $\vec{A} \cdot \vec{C} = 0$ then the vector \vec{A} is parallel to $\vec{B} \times \vec{C}$.

Statement-2: $\vec{A} \perp \vec{B}$ and $\vec{A} \perp \vec{C}$ and $\vec{B} \times \vec{C} \neq 0$ hence \vec{A} is perpendicular to plane formed by \vec{B} and \vec{c} .


- (1) A
- (2) B
- (3) C
- (4) D
- Q.42 Statement-1: If the rectangular components of a force are 8 N and 6N, then the magnitude of the force is 10N.


 $|\vec{A}| = |\vec{B}| = 1$ If then Statement-2: $|\vec{A} \times \vec{B}|^2 + |\vec{A} \cdot \vec{B}|^2 = 1$.


- (1) A (2) B
- (3) C
- (4) D

MORE THAN ONE CORRECT TYPE QUESTIONS

- **Q.43** Which of the following is a true statement?
 - (1) A vector cannot be divided by another vector
 - (2) Angular displacement can either be a scalar or a vector.
 - (3) Since addition of vectors is commutative therefore vector subtraction is also commutative.
 - (4) The resultant of two equal forces of magnitude F acting at a point is F if the angle between the two forces is 120°.
- **Q.44** The vectors \vec{A} and \vec{B} lie in the plane. Vector \vec{c} lies in a different plane. Then, $\vec{A} + \vec{B} + \vec{c}$
 - (1) Cannot be zero
 - (2) Can be zero
 - (3) Lies in the plane of \overrightarrow{A} or \overrightarrow{B}
 - (4) Lies in a plane different from that of any of the three vectors
- Q.45 Which of the arrangement of axes in fig. can be labelled "right handed coordinate system"? As usual, each axis lable indicates the positive side of the axis.

- **Q.46** If \vec{a} and \vec{b} are two vectors with $|\vec{a}| = |\vec{b}|$ and $|\vec{a} + \vec{b}| + |\vec{a} - \vec{b}| = 2 |\vec{a}|$, then angle between \vec{a} and \vec{b}
 - (2)90° (3)60° $(1) 0^{\circ}$
- Q.47 A vector is equally inclined to all of the coordinates axes then the angle made by it with x-axis is θ then –
 - (1) $\cos \theta = \frac{2}{\sqrt{3}}$ (2) $\cos \theta = \frac{1}{\sqrt{3}}$ (3) $\sin \theta = \frac{2}{\sqrt{3}}$ (4) $\sin \theta = \frac{1}{\sqrt{3}}$
- Q.48 The two vectors \vec{A} and \vec{B} are drawn from a common point and $\vec{c} = \vec{A} + \vec{B}$, then angle between \vec{A} and \vec{B} is -
 - (1) 90° if $C^2 = A^2 + B^2$
 - (2) Greater than 90° if $C^2 < A^2 + B^2$
 - (3) Greater than 90° if $C^2 > A^2 + B^2$
 - (4) Less than 90° if $C^2 > A^2 + B^2$

COMPREHENSION TYPE QUESTIONS

- Q.49 A particle is moving along positive x-axis. Its position varies as $x = t^3 - 3t^2 + 12t + 20$, where x is in meters and t is in seconds.
- Initial velocity of the particle is. (i)
 - (1) 1 m/s
- (2) 3 m/s
- (3) 12 m/s
- (4) 20 m/s

- (ii) Initial acceleration of the particle is
 - (1) Zero
- $(2) 1 m/s^2$
- $(3) -3m/s^2$
- $(4) 6 \text{ m/s}^2$
- Velocity of the particle when its acceleration (iii) zero is
 - (1)1 m/s
- (2)3 m/s
- (3)6 m/s
- (4) 9 m/s

MATCH THE COLUMN TYPE QUESTIONS

Q.50

S		Column-I	Column-II				
/	(1)	The maximum	(P)	$-\sqrt{2}$			
		value of 12 $\sin\theta$ – 9					
		$\sin^2\theta$ is					
	(2)	Maximum value	(Q)	4 − √10			
7		of $5 \sin^2 \theta + 4 \cos^2 \theta$					
		θ					
	(3)	The minimum	(R)	4			
		value of $\cos \theta - \sin \theta$					
		θ is					
	(4)	The least value of	(S)	5			
		$\cos^2\theta - 6 \sin\theta \cos\theta$					
		θ + 3 sin ² θ + 2 is					
		attained at θ =					

(1)
$$1 \rightarrow R$$
, $2 \rightarrow S$, $3 \rightarrow P$, $4 \rightarrow Q$

$$(2)$$
 2 \rightarrow R, 2 \rightarrow S, 1 \rightarrow P, 4 \rightarrow Q

(3)
$$1 \rightarrow R$$
, $4 \rightarrow S$, $3 \rightarrow P$, $2 \rightarrow Q$

(4)
$$4 \rightarrow R$$
, $2 \rightarrow S$, $3 \rightarrow P$, $1 \rightarrow Q$

ANSWER KEY

JEE-RANKER'S STUFF

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	1	2	4	2	2	1	1	4	4	2	2	1	3	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	1	1	2	3	4	3	1	3	3	4	2	2	3	2	2
Que.	31	32	33	34	35	36	37		38	39	40	41	42	43	44
Ans.	8	192	14	30	1.13	13.4	10,14,18		0.6	3	1	4	2	1,2,4	1,4
Que.	45	46	47	48	49(i)	49(ii)	49(iii)	50							
Ans.	1,2,3	1,4	2,3	1,2,4	3	4	4	1							

