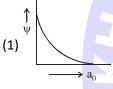
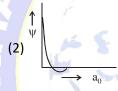
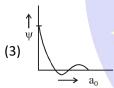
Chapter

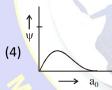
02

Atomic Structure

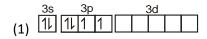

NEET RANKER'S STUFF



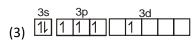

- **Q.1** Radius of H-atom in its ground state is 5.3×10^{-11} m. After collision with an electron it is found to have a radius of 21.2×10^{-11} m. What is the principal quantum no. 'n' of the final state of the atom:-
 - (1) n = 2
- (2) n = 3
- (3) n = 4
- (4) n = 16
- Q.2 What should be the wavelength and energy respectively of the emitted light when the electron of hydrogen atom undergoes transition from first excited state to ground state?
 - (1) 1215 Å and 21.8×10^{-12} erg
 - (2) 6.560 Å and 16.35×10^{-12} erg
 - (3) 1215 Å and 16.35×10^{-12} erg
 - (4) 6560 Å and 21.8 \times 10⁻¹² erg
- Q.3 What should be the ratio of energies of the electrons of the first orbits of Na⁺¹ and H?
 - (1) 11:1
- (2) 121:1
- (3)1:121
- (4) 1:11
- **Q.4** What should be the frequency (in cycles per second) of the emitted radiation when an electron undergoes transition from M energy level to K energy level, if the value of R is 10⁵ cm⁻¹.
 - $(1) 3/2 \times 10^{15}$
- $(2) 8/3 \times 10^{15}$
- $(3) 8/5 \times 10^{15}$
- $(4) 9/4 \times 10^{15}$


- Q.5 The ionization energy of the ground state hydrogen atom is 2.18×10^{-18} J. The energy of an electron in second orbit of He⁺ will be
 - $(1) -1.09 \times 10^{-18} \text{ J}$
- $(2) 4.36 \times 10^{-18} \text{ J}$
- $(3) 2.18 \times 10^{-18} \text{ J}$
- $(4) -2.18 \times 10^{-18} \text{ J}$
- Q.6 If kinetic energy of a proton is increased nine times the wavelength of the de-Broglie wave associated with it would become
 - (1) 3 times
- (2) 9 times
- (3) 1/3 times
- (4) 1/9 times
- Q.7 An ion Mn^{a+} has the magnetic moment equal to 4.9 B.M. The value of 'a' is:
 - (1)3
- (2)4
- (3) 2
- (4) 5
- Q.8 For an electron in a hydrogen atom, the wave function, ψ is proportional to \exp^{-r/a_0} , where a_0 is the Bohr's radius. What is the ratio of the probability of finding the electron at the nucleus to the probability of finding it at a_0 .
 - (1)e
- $(2) e^{2}$
- $(3) 1/e^2$
- (4) zero
- **Q.9** The maximum probability of finding electron in the d_{xy} orbital is :
 - (1) along the x-axis
 - (2) along the y-axis
 - (3) at an angle of 45° from the x & y-axis
 - (4) at an angle of 90° from the x & y-axis

- **Q.10** Maximum value (n + l + m) for unpaired electrons in second excited state of chlorine 17Cl is:
 - (1)28
- (2)25
- (3)20
- (4) none of these
- Q.11 The distance between 3rd and 2nd Bohr orbits of hydrogen atom is
 - (1) 0.529×10^{-8} cm
- (2) 2.645×10^{-8} cm
- $(3) 2.116 \times 10^{-8} \text{ cm}$
- $(4) 1.058 \times 10^{-8} \text{ cm}$
- **Q.12** The ratio of $(E_2 E_1)$ to $(E_4 E_3)$ for the hydrogen atom is approximately equal to:
 - (1) 10
- (2)15
- (3) 17
- (4) 12
- Q.13 Which of the following graphs correspond to one node?



- Q.14 The number of waves made by a Bohr electron in an orbit of maximum magnetic quantum number 3 is:
 - (1)3
- (2)4
- (3)2
- (4) 1
- Q.15 A compound of vanadium has a magnetic moment of 1.73 BM. The electronic configuration of vanadium ion in the compound is:
 - $(1) [Ar] 3d^2$
- (2) [Ar]3d¹4s⁰
- $(3) [Ar] 3d^3$
- (4) 3d⁰4s¹
- **Q.16** The wave number of the limiting line in Lyman series of hydrogen is 109678 cm⁻¹. The wave number of the limiting line in Balmer series of He⁺ would be:
 - (1) 54839 cm⁻¹
- (2) 219356 cm⁻¹


- (3) 109678 cm⁻¹
- (4) 438712 cm⁻¹
- Q.17 The ratio of specific charge of an electron to that of a proton is
 - (1) 1 : 1
- (2) 1837 : 1
- (3) 1 : 1837
- (4) 2 : 1
- Q.18 The electrons, identified by quantum numbers n and l, (i) n = 4, l = 1 (ii) n = 4, l = 0 (iii) n = 3, l = 2(iv)n = 3, l = 1 can be placed in order of increasing energy, from the lowest to highest, as
 - (1) (iv) < (ii) < (iii) < (i)
 - (2) (ii) < (iv) < (i) < (iii)
 - (3) (i) < (iii) < (ii) < (iv)
 - (4) (iii) < (i) < (iv) < (ii)
- Q.19 Uncertainty in the position of an electron (mass = 9.1×10^{-31} kg) moving with a velocity 300 ms⁻¹, accurate upto 0.001%, will be:

$$(h = 6.63 \times 10^{-34} Js)$$

- (1) 19.2×10^{-2} m (2) 5.76×10^{-2} m
- $(3) 1.92 \times 10^{-2} \text{ m}$
- $(4) 3.84 \times 10^{-2} \text{ m}$
- **Q.20** The ionization enthalpy of hydrogen atom is 1.312 × 10⁶ J mol⁻¹. The energy required to excite the electron in the atom from n = 1 to n = 2 is
 - (1) $8.51 \times 10^5 \text{ J mol}^{-1}$ (2) $6.56 \times 10^5 \text{ J mol}^{-1}$
 - (3) $7.56 \times 10^5 \text{ J mol}^{-1}$ (4) $9.84 \times 10^5 \text{ J mol}^{-1}$
- Q.21 Which of the following has maximum energy?

l1 l1

- Q.22 The frequency of radiation emitted when the electron falls from n = 4 to n = 1 in a hydrogen atom will be (Given ionization energy of H = 2.18 $\times 10^{-18} \, \text{J atom}^{-1}$
 - (1) $1.03 \times 10^{15} \text{ s}^{-1}$
- (2) $3.08 \times 10^{15} \,\mathrm{s}^{-1}$
- (3) $2.00 \times 10^{15} \,\mathrm{s}^{-1}$
- (4) $1.54 \times 10^{15} \text{ s}^{-1}$
- Q.23 What is the maximum number of electrons which can be accommodated in an atom in which the highest principal quantum number value is 4?
 - (1) 10
- (2)18
- (3)36
- (4)54
- Q.24 The wavelength of radiation emitted when an electron in a hydrogen atom makes a transition from an energy level with n = 3 to a level with n = 2 is:

[Given that
$$E_n = \frac{-1312}{n^2} \text{ kJmol}^{-1}$$
]

- $(1) 6.56 \times 10^{-7} \text{ m}$
- (2) 65.6 nm
- (3) 65.6×10^{-7} m
- (4) any of the above
- Q.25 The energy required to escape the electron from ground state of H is 13.6 eV then the same for Ist excited state of H atom:
 - (1) 3.4
 - (2) 13.6
 - (3)27.2
 - (4) can't say anything
- **Q.26** A gas absorbs a photon of 355 nm and emits at two wavelengths. If one of the emissions is at 680 nm, the other is at:
 - (1) 743 nm
- (2) 518 nm

- (3) 1035 nm
- (4) 325 nm
- Q.27 The frequency of light emitted for the transition n = 4 to n = 2 of He⁺ is equal to the transition in H atom corresponding to which of the following:
 - (1) n = 3 to n = 1
 - (2) n = 2 to n = 1
 - (3) n = 3 to n = 2
 - (4) n = 4 to n = 3
- Q.28 Energy of an electron is given by

E=
$$-2.178 \times 10^{-18} J \left(\frac{Z^2}{n^2}\right)$$
. Wavelength of light

required to excite an electron in an hydrogen atom from level n = 1 to n = 2 will be :

(h =
$$6.62 \times 10^{-34}$$
 Js and c = 3.0×10^8 ms⁻¹)

- (1) 1.214×10^{-7} m (2) 2.816×10^{-7} m
- (3) 6.500×10^{-7} m (4) 8.500×10^{-7} m
- Q.29 Supposing the I.P. of hydrogen atom is 960 eV. Find out the value of principal quantum number having the energy equal to - 60 eV:

- (1) n = 2 (2) n = 3 (3) n = 4 (4) n = 5
- Q.30 If the ionisation potential of an atom is 20V, its first excitation potential will be:

- (1) 5 V (2) 10 V (3) 15 V (4) 20 V
- Q.31 Match the following

A.	Energy of ground of He ⁺	i.	+6.04 eV
B.	Potential energy of I orbit of H-atom	ii.	−27.2 eV
C.	Kinetic energy of II excited state of He ⁺	iii.	54.4 eV

D. Ionization potential of iv. -54.4 eV

(1) A - i; B - ii; C - iii; D - iv

(2) A - iv ; B - iii ; C - ii ; D - i

(3) A - iv ; B - ii ; C - i ; D - iii

(4) A - ii ; B - iii ; C - i ; D - iv

ASSERTION & REASON TYPE QUESTIONS

In each sub-question below an assertion A and reason R is given. Choose the correct answers from the codes A, B, C and D given for each question.

- (A) If both A and R are correct and R is correct explanation of A.
- (B) If both A and R are correct and R is not correct explanation of A.
- (C) If A is correct but R is wrong.
- (D) If A is wrong but R is correct.
- Q.32 Assertion: K and Cs are used in photoelectric cells.

Reason: K and Cs emit electrons on exposure to light.

(1) A

(2) B

(3) C

(4) D

Q.33 Assertion: Radiant energy of quantum is given by E = hv.

Reason: Quantum in the energy equation signifies the principal quantum number.

(1) A

(2) B

(3) C

(4) D

Q.34 Assertion: Energy of the orbitals increases as 1s < 2s = 2p < 3s = 3d = 3d < 4s = 4p = 4d = 4f < ...

Reason: Energy of the electron depends completely on the principal quantum numbers.

(1) A

(2) B

(3) C

(4) D

Q.35 Assertion : It is impossible to determine the exact position and exact momentum of an electron simultaneously.

Reason: The path of an electron in an atom is clearly defined.

(1) A

(2) B

(3) C

(4) D

Q.36 Assertion: Emitted radiation will fall in visible range when an electron jump n= 4 to n = 2 in H-atom.

Reason: Balmer series radiations belong to visible range for hydrogen atom only.

(1) A

(2) B

(3) C

(4) D

Q.37 Assertion: The kinetic energy of photoelectrons increases with increases in frequency of incident light where v >v₀.

Reason: Whenever intensity of light is increased the number of photo-electrons ejected always increases.

(1) A

(2) B

(3) C

(4) D

Q.38 Assertion: Cu⁺² is a coloured ion.

Reason: Every ion with unpaired electron is coloured.

(1) A

(2) B

(3) C

(4) D

Q.39 Assertion: For n= 3, L may be 0,1 and 2 and m may be 0; 0 ± 1 ; and ± 2

Reason: For each value of n, there are 0 to (n-1) possible values of L; and for each value of I, there are 0 to \pm values of m.

(1) A

(2) B

(3) C

(4) D

ANSWER KEY

NEET RANKER'S STUFF

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	1	3	2	2	3	3	1	4	3	4	2	2	2	2	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	3	2	1	3	4	2	2	3	1	1	4	2	1	3	3
Que.	31	32	33	34	35	36	37	38	39						
Ans.	3	1	3	3	3	1	3	3	1						

