Chapter

Quadratic Equation

JEE-FLASHBACK

JEE MAINS QUESTION

- **Q.1** If $a \in R$ and the equation $-3(x \lceil x \rceil)^2 + 2(x \lceil x \rceil)^2$ [x]) + a^2 = 0 (where [x] denotes the greatest integer $\leq x$) has no integral solution, then all possible values of a lie in the interval: [JEE(Main) 2014]
 - (1)(-2,-1)
- $(2) (-\infty, -2) \cup (2, \infty)$
- $(3)(-1,0)\cup(0,1)$
- (4)(1,2)
- **Q.2** Let α and β be the roots of equation $px^2 + qx + r =$ 0, p \neq 0. If p, q, r are in the A.P. and $\frac{1}{\alpha} + \frac{1}{\beta} = 4$,

then the value of $|\alpha - \beta|$ is : [JEE(Main)2014]

- (2) $\frac{2\sqrt{13}}{9}$
- (3) $\frac{\sqrt{61}}{2}$
- (4) $\frac{2\sqrt{17}}{9}$
- Q.3 Let α and β be the roots of equation $x^2 - 6x - 2 = 0$. If $a_n = \alpha^n - \beta^n$, for $n \ge 1$, then the value of $\frac{a_{10}-2a_8}{2a_0}$ is equal to : [JEE(Main)2015]
 - (1)6
- (2) 6
 - (3) 3 (4) -3
- The sum of all real values of x satisfying the equation $(x^2 - 5x + 5)^{x^2 + 4x - 60} = 1$ is :-

[JEE-MAIN-2016]

- (1)5
- (2)3
- (3) -4
- (4)6
- Q.5 If the difference between the roots of the equation $x^2 + ax + 1 = 0$ is less than $\sqrt{5}$, then the set of possible values of a is- [JEE MAIN-2017]
 - (1)(-3,3)
- $(2) (-3, \infty)$
- $(3)(3,\infty)$
- $(4) (-\infty, -3)$

- **Q.6** The number of all possible positive integral values of α for which the roots of the quadratic equation, $6x^2 - 11x + \alpha = 0$ are rational numbers [JEE(Main) 2019] is:
 - (1)3
- (2)4
- (3)5
- (4) 2
- Q.7 If λ be the ratio of the roots of the quadratic equation in x, $3m^2x^2 + m(m - 4)x + 2 = 0$, then the least value of m for which $\lambda + \frac{1}{2} = 1$, is:

[JEE(Main) 2019]

- (1) $-2 + \sqrt{2}$ (2) $4 3\sqrt{2}$ (3) $2 \sqrt{3}$ (4) $4 2\sqrt{3}$

- **Q.8** Let α and β be two real roots of the equation (k + 1)tan²x - $\sqrt{2} \cdot \lambda \tan x = (1 - k)$, where $k \neq -1$ and λ are real numbers. If $tan^2(\alpha + \beta) = 50$, then a value of λ is: [JEE-MAIN-2020]
 - (1) 10
- (2) $5\sqrt{2}$ (3) 5
- (4) $10\sqrt{2}$
- Q.9 Let α and β be the roots of the equation $x^2 - x - 1 =$ 0. If $p_k = (\alpha)^k + (\beta)^k$, $k \ge 1$, then which one of the following statements is not true?

[JEE-MAIN-2020]

- (1) $p_3 = p_5 p_4$
- (2) $(p_1 + p_2 + p_3 + p_4 + p_5) = 26$
- $(3) p_5 = 11$
- (4) $p_5 = p_2 \cdot p_3$
- Q.10 Let S be the set of all real roots of the equation, $3^{x}(3^{x}-1)+2=|3^{x}-1|+|3^{x}-2|$ Then S.

[JEE-MAIN-2020]

- (1) Contains exactly two elements
- (2) contains at least four elements
- (3) is an empty sets
- (4) is a singleton

- **Q.11** Let a, b \in R, a \neq 0 be such that the equation, $ax^2 - 2bx + 5 = 0$ has a repeated root α , which is also a root of the equation, $x^2 - 2bx - 10 = 0$. If β is the other root of this equation, then $\alpha^2 + \beta^2$ [JEE-MAIN-2020] is equal to:
 - (1)25
- (2)28
- (3)26
- (4)24
- **Q.12** Let α and β be the roots of the equation, $5x^2 + 6x - 2 = 0$. If $S_n = \alpha^n + \beta^n$, n = 1, 2, 3,, then: [JEE-MAIN-2020]
 - $(1) 6S_6 + 5S_5 = 2S_4$
- $(2) 5S_6 + 6S_5 = 2S_4$
- $(3) 6S_6 + 5S_5 + 2S_4 = 0$ $(4) 5S_6 + 6S_5 + 2S_4 = 0$
- Q.13 Let f(x) be a quadratic polynomial such that f(-1) + f(2) = 0. If one of the roots of f(x) = 0 is 3, [JEE-MAIN-2020] then its other root lies in:
 - (1)(0,1)
- (2)(-3,-1)
- (3)(-1,0)
- (4)(1,3)
- 2 = 0 and $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ are the roots of the equation $2x^2 + 2qx + 1 = 0$, then $\left(\alpha - \frac{1}{\alpha}\right) \left(\beta - \frac{1}{\beta}\right) \left(\alpha + \frac{1}{\beta}\right) \left(\beta + \frac{1}{\alpha}\right)$ is equal to:

[JEE-MAIN-2020]

- (1) $\frac{9}{4}$ (9 + q²) (2) $\frac{9}{4}$ (9 p²)
- (3) $\frac{9}{4}$ (9 q²) (4) $\frac{9}{4}$ (9 + p²)
- **Q.15** Let α and β be the roots of $x^2 3x + p = 0$ and γ and δ be the roots of $x^2 - 6x + q = 0$. If α , β , γ , δ form a geometric progression. Then ratio (2q + p) : (2q - p) is : [JEE-MAIN-2020]
 - (1)3:1
- (2)5:3
- (3)9:7
- (4)33:31
- **Q.16** Let $\lambda \neq 0$ be in R. If α and β are the roots of the equation, $x^2 - x + 2\lambda = 0$ and α and γ are the roots of the equation, $3x^2 - 10x + 27\lambda = 0$, then
 - $\frac{\beta\gamma}{\gamma}$ is equal to –

[JEE-MAIN-2020]

- (1)9
- (2)36
- (3)18
- (4)27

Q.17 If α and β are the roots of the equation, $7x^2 - 3x$ -2 = 0, then the value of $\frac{\alpha}{1-\alpha^2} + \frac{\beta}{1-\beta^2}$ is equal

[JEE-MAIN-2020]

- $(1) \frac{3}{8}$ $(2) \frac{1}{24}$ $(3) \frac{27}{16}$ $(4) \frac{27}{32}$
- **Q.18** If α and β be two roots of the equation $x^2 - 64x + 256 = 0$.

Then the value of $\left(\frac{\alpha^3}{\beta^5}\right)^{\frac{2}{8}} + \left(\frac{\beta^3}{\alpha^5}\right)^{\frac{1}{8}}$ is

[JEE-MAIN-2020]

- (1) 1
- (2)3
- (3)4
- (4) 2
- **Q.19** If α and β are the roots of the equation $2x(2x + \alpha)$ 1) = 1, then β is equal to [JEE-MAIN-2020]
 - (1) $2\alpha^2$
- $(2) 2\alpha(\alpha + 1)$
- $(3) -2\alpha(\alpha + 1)$
- (4) $2\alpha(\alpha-1)$
- Q.20 Let p and q be two positive numbers such that p + q = 2 and $p^4 + q^4 = 272$. Then p and q are roots of the equation: [JEE-MAIN-2021]

 - (1) $x^2 2x + 2 = 0$ (2) $x^2 2x + 8 = 0$
 - (3) $x^2 2x + 136 = 0$ (4) $x^2 2x + 16 = 0$
- Q.21 Let a, b, c be in arithmetic progression. Let the centroid of the triangle with vertices (a, c), (2, b)

and (a, b) be $\left(\frac{10}{3}, \frac{7}{3}\right)$. If α , β are the roots of the

equation $ax^2 + bx + 1 = 0$, then the value of $\alpha^2 + \beta^2 - \alpha\beta$ is: [JEE-MAIN-2021]

- (1) $\frac{71}{256}$ (2) $\frac{69}{256}$ (3) $-\frac{69}{256}$ (4) $-\frac{71}{256}$
- Q.22 The integer 'k', for which the inequality $x^2 - 2(3k - 1)x + 8k^2 - 7 > 0$ is valid for every x in [JEE-MAIN-2021] R, is :
 - (1) 3 (2) 2 (3)0(4) 4
- **Q.23** If α , $\beta \in R$ are such that 1– 2i (here $i^2 = -1$) is a root of $z^2 + \alpha z + \beta = 0$, then $(\alpha - \beta)$ is equal to : [JEE-MAIN-2021]
 - (1) -3
- (2) -7
- (3)7
- (4) 3

MATHEMATICS

Q.24 Let α and β be the roots of x^2 – 6x – 2 = 0. If $a_n = \alpha^n - \beta^n$ for $n \ge 1$. then the value of $\frac{a_{10} - 2a_8}{2a_n}$ is:

[JEE-MAIN-2021]

- (1) 2
- (2) 1
- (3)4
- (4) 3
- Q.25 The number of real solution of the equation, $|x^2 - |x| - 12 = 0$ is : [JEE-MAIN-2021]
 - (1) 2
- (2)3
- (3)1
- **Q.26** Let $\alpha = \max_{x \in R} \{8^{2\sin 3x}.4^{4\cos 3x}\}$ and

$$\beta = \min_{x \in R} \left\{ 8^{2\sin 3x} . 4^{4\cos 3x} \right\}. \text{ If } 8x^2 + bx + c = 0 \text{ is}$$

a quadratic equation whose roots are $\alpha^{1/5}$ and $\beta^{1/5}$, then the value of c – b is equal to :

[JEE-MAIN-2021]

- (1)42(2)47
- (3)43

(3) 50

- (4)50
- **Q.27** Let α, β be two roots of the equation $x^2 + (20)^{1/4}x + (5)^{1/2} = 0$. Then $\alpha^8 + \beta^8$ is
 - equal to [JEE-MAIN-2021]
 - (1) 10
- (2) 100
- (4) 160
- Q.28 The least positive value of 'a' for which the equation, $2x^2 + (a - 10)x + \frac{33}{2} = 2a$ has real roots [JEE-MAIN-2021]
- Q.29 The number of the real roots of the equation $(x+1)^2 + |x-5| = \frac{27}{4}$ is _____.

[JEE-MAIN-2021]

Q.30 If the sum of the squares of the reciprocals of the roots α and β of the equation $3x^2 + \lambda x - 1 =$ 0 is 15, then $6(\alpha^3 + \beta^3)^2$ is equal to

[JEE MAIN 2022]

- (1)18
- (2)24
- (3)36
- (96)
- **Q.31** Let $a,b \in R$ be such that the equation $ax^2 2bx$ + 15=0 has a repeated root α . If α and β are the roots of the equation $x^2 - 2bx + 21 = 0$, then α^2 + β^2 is equal to [JEE MAIN 2022]
 - (1)37
- (2)58
- (3)68
- (4)92

Q.32 Let α and β be the roots of the equation x^2 + (2i) - 1)=0. Then, the value of $\left|\alpha^{8}+\beta^{8}\right|\,$ is equal to :

[JEE MAIN 2022]

- (1)50
- (2)250
- (3) 1250 (4) 1500
- Q.33 If the sum of all the roots of the equation $e^{2x} - 11e^x - 45^{-x} + \frac{81}{2} = 0$ is log_ep, then p is
 - [JEE MAIN 2022] equal to .
- **Q.34** If α , β , γ , δ are the roots of the equation $x^4 + x^3$ $+x^2 +x=1 = 0$, then $\alpha^{2021} + \beta^{2021} + \gamma^{2021} + \delta^{2021}$ is equal to: [JEE MAIN 2022]
 - (1) -4(2) -1
- (3)1
- (4)4
- Q.35 The minimum value of the sum of the squares of the roots of $x^2 + (3 - a)x + 1 = 2a$ is

[JEE MAIN 2022]

- (1)4(2)5
- (3)6(4) 8
- **Q.36** Let α , β be the roots of the equation

$$x^2 - \sqrt{2}x + \sqrt{6} = 0$$
 and $\frac{1}{\alpha^2} + 1, \frac{1}{\beta^2} + 1$ be the

roots of the equation

 $X^2 + ax + b = 0$. Then the roots of the equation x^2 -(a+b-2)x+(a+b+2)=0 are:

[JEE MAIN 2022]

- (1) non-real complex numbers
- (2) real and both negative
- (3) real and both positive
- (4) real and exactly one of them is positive
- **Q.37** For a natural number n, let $\alpha_n = 19^n 12^n$. Then, the value of $\frac{31\alpha_9 - \alpha_{10}}{57\alpha_8}$ is _____.

[JEE MAIN 2022]

- **Q.38** Let α , β , γ be the three roots of the equation x^3 + bx + c = 0. If $\beta \gamma = 1 = -\alpha$, then $b^3 + 2c^3 - 3\alpha^3 - \alpha^3 = -\alpha$ $6\beta^3 - 8\gamma^3$ is equal to [JEE MAIN 2023]
 - (1) $\frac{155}{8}$ (2) 21 (3) $\frac{169}{8}$ (4) 19
- Q.39 Let m and n be the numbers of real roots of the quadratic equations $x^2 - 12x + [x] + 31 = 0$ and

 $x^2 - 5 |x + 2| - 4 = 0$ respectively, where [x] denotes the greatest integer $\leq x$. Then $m^2 + mn + n^2$ is equal to _____. [JEE MAIN 2023]

Q.40 If a and b are the roots of the equation $x^2 - 7x - 1 = 0$, then the value of $\frac{a^{21} + b^{21} + a^{17} + b^{17}}{a^{19} + b^{19}}$ is equal to [JEE MAIN 2023]

JEE ADVANCED QUESTION

Q.1 The quadratic equation p(x) = 0 with real coefficients has purely imaginary roots. Then the equation p(p(x)) = 0 has

[JEE (Advanced) 2014]

- (1) only purely imaginary roots
- (2) all real roots
- (3) two real and two purely imaginary roots
- (4) neither real nor purely imaginary roots
- Q.2 Let S be the set of all non-zero real numbers α such that the quadratic equation $\alpha x^2 x + \alpha = 0$ has two distinct real roots x_1 and x_2 satisfying the inequality $|x_1 x_2| < 1$. Which of the following intervals is(are) a subset(s) of S?

[JEE (Advanced) 2015]

(1)
$$\left(-\frac{1}{2}, -\frac{1}{\sqrt{5}}\right)$$
 (2) $\left(-\frac{1}{\sqrt{5}}, 0\right)$

$$(3) \left(0, \frac{1}{\sqrt{5}}\right) \qquad (4) \left(\frac{1}{\sqrt{5}}, \frac{1}{2}\right)$$

- Q.3 Let $-\frac{\pi}{6} < \theta < -\frac{\pi}{12}$. Suppose α_1 and β_1 are the roots of the equation $x^2 2x$ sec $\theta + 1 = 0$ and α_2 and β_2 are the roots of the equation $x^2 + 2x$ tan $\theta 1 = 0$. If $\alpha_1 > \beta_1$ and $\alpha_2 > \beta_2$, then $\alpha_1 + \beta_2$ equals [JEE (Advanced) 2016]
 - (1) $2(\sec\theta \tan\theta)$
- (2) 2sec θ
- (C) 2tan θ
- (4) 0

Comprehension (Q.4 & Q.5)

Let p, q be integers and let α , β be the roots of the equation, $x^2 - x - 1 = 0$ where $\alpha \neq \beta$. For n = 0,1,2,...., let $a_n = p\alpha^n + q\beta^n$.

FACT: If a and b are rational numbers and $a + b \sqrt{5} = 0$, then a = 0 = b.

Q.4 a₁₂ =

[JEE(Advanced) 2017]

- $(1) a_{11} + 2 a_{10}$
- $(2) 2a_{11} + a_{10}$
- $(3) a_{11} a_{10}$
- $(4) a_{11} + a_{10}$
- Q.5 If $a_4 = 28$, then p + 2q = [JEE(Advanced) 2017]
 - (1) 14
- (2)7
- (3)21
- (4) 12
- Q.6 Let α and β be the roots of $x^2-x-1=0$, with α > β . For all positive integers n, define $a_n = \frac{\alpha^n \beta^n}{\alpha \beta}, n \ge 1 \text{ , } b_1 = 1 \text{ and } b_n = a_{n-1} + a_{n+1},$

n>2

Then the following options is/are correct?

[JEE(Advanced) 2019]

(1)
$$\sum_{n=1}^{\infty} \frac{a_n}{10^n} = \frac{10}{89}$$

- (2) $b_n = \alpha^n + \beta^n$ for all $n \ge 1$
- (3) $a_1 + a_2 + \dots + a_n = a_{n+2} 1$ for all $n \ge 1$
- (4) $x^2 \ge 1$
- Q.7 Suppose a, b denote the distinct real roots of the quadratic polynomial x² + 20x 2020 and suppose c, d denote the distinct complex roots of the quadratic polynomial x² + 20x 2020. Then the value of ac(a-c) + ad(a-d) + bc(b-c) + bd(b-d) is [JEE(Advanced) 2020]
 - (1) 0
- (2) 8000
- (3)8080
- (4) 16000
- **Q.8** For $x \in \mathbb{R}$, the number of real roots of the equation $3x^2 4 |x^2 1| + x 1 = 0$ is _____.

[JEE(Advanced) 2021]

ANSWER KEY

JEE-FLASHBACK

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	2	3	2	1	1	2	1	4	4	1	2	3	2	3
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	3	3	4	3	4	4	1	2	1	1	1	3	8	2	2
Que.	31	32	33	34	35	36	37	38	39	40				-	
Ans.	2	1	45	2	3	2	4	4	9	51					

JEE-ADVANCED QUESTION

	Que.	1	2	3	4	5	6	7	8
1	Ans:	4	1,4	3	4	4	1,2,3	4	4

*8 KHAN SIR 8**

