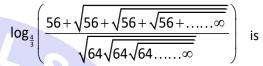
Chapter

01

Basic Maths and Logarithm


RANKER'S STUFF

SINGLE CORRECT TYPE QUESTION

- Q.1 $\frac{1}{\log_{\sqrt{6c}} abc} + \frac{1}{\log_{\sqrt{ca}} abc} + \frac{1}{\log_{\sqrt{ab}} abc}$ has the value equal to
 (1) 1/2 (2) 1 (3) 2 (4) 4
- Q.2 If $5 x^{\log_2 3} + 3^{\log_2 x} = 162$ then logarithm of x to the base 4 has the value equal to
 (1) 2 (2) 1 (3) -1 (4) 3/2
- Q.3 If $\log (x+y) = \log 2 + \frac{1}{2} \log x + \frac{1}{2} \log y$, then (1) x+y=0 (2) xy=1(3) $x^2 + xy + y^2 = 0$ (4) x-y=0
- Q.4 If $\log_2(\log_3(\log_4 x)) = 0$, $\log_4(\log_3(\log_2 y)) = 0$ and $\log_3(\log_4(\log_2 z)) = 0$, then the correct option is (1) x > y > z
 - (3) z > x > y (4) z > y > z
- **Q.5** The value of $\log_2\left(\frac{1}{7^{\log_7 0.125}}\right)$, is
 (1) 1 (2) 2 (3) 3 (4) 4
- Q.6 Let x satisfies the equation $log_3(log_9x) = log_9(log_3x)$ then the product of the digits in x is (1) 9 (2) 18 (3) 36 (4) 8
- Q.7 If $log_3(log_2a) + log_{\frac{1}{3}}(log_{\frac{1}{2}}b) = 1$, then the value of ab^3 is
 - (1) 9 (2) 3 (3) 1 (4) $\frac{1}{3}$

Q.8 The value of

equal to
(1) 0 (2) 2 (3) 3 (4)

Q.9 The value of $\log_{\frac{1}{6}} 2 \cdot \log_5 36 \cdot \log_{17} 125 \cdot \log_{\frac{1}{\sqrt{2}}} 17$, is equal to

(1) -3 (2) -6 (3) 6 (4) 12

Q.10 Product of all the solution of equation $x^{\log_{10} x} = \left(100 + 2^{\sqrt{\log_2 3}} - 3^{\sqrt{\log_3 2}}\right) x \text{ is}$

(1) $\frac{1}{10}$ (2) 1 (3) 10 (4) 100

Q.11 If $log_7 2 = m$, then the value of $log_{49} 28$ is

(1) 2 (1 + 2m) (2) $\frac{1+2m}{2}$

(3) $\frac{2}{1+2m}$ (4) 1 + m

Q.12 If $\frac{a + \log_4 3}{a + \log_2 3} = \frac{a + \log_8 3}{a + \log_4 3} = b$, then b is equal to

(1) $\frac{1}{2}$ (2) $\frac{2}{3}$ (3) $\frac{1}{3}$ (4) $\frac{3}{2}$

- **Q.13** Let x, y and z be positive real numbers such that $x^{\log_2 7} = 8$, $y^{\log_3 5} = 81$ and $z^{\log_5 216} = \sqrt[3]{5}$. The value of $x^{(\log_2 7)^2} + y^{(\log_3 5)^2} + z^{(\log_5 216)^2}$, is (1) 526 (2) 750 (3) 874 (4) 974
- **Q.14** If x = 500, y = 100 and z = 5050, then the value of $(\log_{xyz} x^z)(1 + \log_x yz)$ is equal to (1) 500 (2) 100 (3) 5050 (4) 10

Q.15 Suppose n be an integer greater than 1, let $a_n =$ $\frac{1}{\log_{n} 2002}$. Suppose b = a₂ + a₃ + a₄ + a₅ and

 $c = a_{10} + a_{11} + a_{12} + a_{13} + a_{14}$. Then (b - c) equals

- (2) $\frac{1}{1002}$
- (3) 1
- (4) 2
- $\textbf{Q.16} \quad \text{If} \quad \textbf{10}^{\log_a(\log_c(\log_c x))} = \textbf{1} \quad \text{ and } \quad \textbf{10}^{\left(\log_b\left(\log_c(\log_a x)\right)\right)} = \textbf{1}$ then, a is equal to

 - (1) $\frac{a}{b}$ (2) $c^{a/b}$ (3) ab
- **Q.17** If $x \in R$, then number of real solution of the equation $2^x + 2^{-x} = \log_5 24$ is
 - (1)0
- (3) 2
- (4) more than 2
- **Q.18** If $x \ge y > 1$ then the maximum value of \log_x $\left(\frac{x}{y}\right) + \log_y\left(\frac{y}{x}\right)$ is equal to

- (1)-2 (2) 0 (3) 2 (4) 4
- **Q.19** If $\log_5(3^x 4^y) = 3$ and $3^{\frac{x}{2}} 2^y = 5$, then $\frac{x}{y}$ is equal to
 - (1) $\frac{2(\log_2 5) 2}{1 + \log_2 5}$ (2) $\frac{(\log_3 5) + 2}{1 + \log_2 5}$

 - (3) $\frac{2(\log_3 5) + 2}{1 + \log_2 5}$ (4) $\frac{2(\log_3 5) + 1}{1 + \log_5 5}$
- **Q.20** Let $x = 4^{\log_2 \sqrt{9^{k-1} + 7}}$ and $y = \frac{1}{32^{\log_2 \sqrt[5]{3^{k-1} + 1}}}$ and xy

= 4, then the sum of the cubes of the real value(s) of k is

- (1) 1
- (2)5
- (3)8
- (4)9
- Q.21 Number of real solution(s) of the equation $9^{\log_3(\ln x)} = \ln x - (\ln^2 x) + 1$ is equal to
 - (1)0
- (2) 1
- (3)2
- (4) 3
- **Q.22** If a, b, c are distinct positive number but no one among them is equal to one and log_ba log_ca + $log_ab log_cb + log_ac log_bc = 3$, then value of abc is
 - (1) 2
- (2) 3
- (3) 0
- (4) 1
- **Q.23** Let α , β , are two real solution of equation $(\log_{10}x)^2$ + $\log_{10} x^2 = (\log_{10} 2)^2 - 1$, then $\sqrt{\frac{1}{\alpha \beta}}$ equal to
 - (1)20
- (2)3
- (3) 10
- (4) 1

- Q.24 Let a, b, c, d are positive integer such that log_ab = 3/2 and $\log_c d = 5/4$. If a - c = 9, then value of (b – d) is equal to
 - (1)20
- (2)93
- (3) 10
- (4) 1
- **Q.25** The values of a for which the equation $2(\log_3 x)^2$ $-\log_3 x$ + a = 0 posses four real solution

 - (1) -2 < a < 0 $(2) 0 < a < \frac{1}{8}$

NUMERICAL VALUE TYPE QUESTIONS

Q.26 Suppose x, y, z > 0 & different from one and $\ell n \times + \ell n \times + \ell n \times = 0$, then value of

 $x^{\frac{1}{(ny)} + \frac{1}{(nz)}} \cdot y^{\frac{1}{(nz)} + \frac{1}{(nx)}} \cdot z^{\frac{1}{(nx)} + \frac{1}{(ny)}}$ is e^{-k} then k equals

- **Q.27** If $\log \left(\frac{x^2}{v^3} \right) = 1 \& \log(x^2 y^3) = 7$ then $\log |xy|$ is equal to___
- Q.28 The number of positive integers satisfying $x + \log_{10} (2^{x} + 1) = x \log_{10} 5 + \log_{10} 6$ is _____.
- Q.29 If x, $y \in R^+$ satisfies $log_8x + log_4y^2 = 5$ and $log_8y + log_4x^2 = 7$, then the value of xy is .
- Q.30 Find all positive values of 'a' for which the equation log(ax) = 2 log(x + 1) has the unique root .
- Q.31 If x, y, z be positive real numbers such that $log_{2x} z = 3$, $log_{5y} z = 6$ and $log_{xy} z = 2/3$ then the value of z is in the form of m/n in lowest form then n – m is equal to
- **Q.32** The number N = $\frac{\log_5 250}{\log_{50} 5} \frac{\log_5 10}{\log_{1250} 5}$ when simplified reduces to a natural number N. find N

PHYSICS

- **Q.33** Let P = log_5 (log_5 3). If $3^{C+5^{-P}}$ = 405 then C equals .
- **Q.34** Number of solution for $|3x^2 2| = [-2\pi]$ (where [·] denotes greatest integer) is _____.
- Q.35 The number of positive integers satisfying the equation $x + \log_{10}(2^x + 1) = x\log_{10}5 + \log_{10}6$ is

STATEMENT TYPE QUESTIONS

Each of the questions given below consist of Statement -I and Statement- II. Use the following key to choose the appropriate answer.

- Both Statement-I Statement-II are true, and Statement-II is the correct explanation of
- Both Statement-I and Statement-II are true but (B) Statement-II is not the correct explanation of Statement-I
- (C) Statement-I is true but Statement-II is false
- Statement-I is false but Statement-II is true.
- Q.36 Statement-I: If N = $\left(\frac{1}{0.4}\right)^{20}$ then N contains 7

digits before decimal

Statement-II: Characteristic of logarithm of N to base 10 is 7.

- (1) A
- (2) B
- (3) C (4) D
- Q.37 Statement-I: The equation $(\log x)^2 \log x^3 + 2 = 0$ has only one solution.

Statement-II: $\log x^2 = 2\log x$ if x > 0.

- (1) A
- (2) B
- (3) C (4) D
- Q.38 Statement-I: Number of cyphers after decimal before a significant figure comes is $N = 2^{-100}$ is 30

Statement-II: Number of cyphers after decimal before a significant figure comes in $N = 2^{-10}$ is 3

- (1) A
- (2) B
- (3) C
- (4) D

MORE THAN ONE CORRECT TYPE QUESTIONS

Q.39 Which of the following when simplified reduces to unity?

- (1) log_{1.5} log₄ log_{.5} 81
- (2) $\log_2 \sqrt{6} + \log_2 \sqrt{\frac{2}{3}}$
- $(3) \frac{1}{6} \log_{\frac{\sqrt{3}}{2}} \left(\frac{64}{27} \right)$
- (4) $\log_{3.5} (1 + 2 + 3 \div 6)$
- Q.40 The x-values satisfying the equation

$$|x-1|^{\log_3 x^2 - 2\log_x 9} = (x-1)^7$$
 is/are

(1)
$$\frac{1}{\sqrt{3}}$$
 (2) 1 (3) 2

- (4)81
- **Q.41** If x = 9 is solution of ℓ n (x²+15a²) $-\ell$ n (a 2) = ℓ n

$$\left(\frac{8ax}{a-2}\right)$$
 then

(1)
$$a = \frac{3}{5}$$
 (2) $a = 3$ (3) $x = 15$ (4) $x = 2$

- **Q.42** If $y = \log_{7-a} (2x^2 + 2x + a + 3)$ is defined $\forall x \in \mathbb{R}$ then possible integer value of a is/are
 - (1)4
- (2) 3 (3) 2

COMPREHENSION TYPE QUESTIONS

- Q.43 Sometimes to solve an equation we may use the identity $a^{\log_a b} = b$, b > 0, a > 0, $a \ne 1$.
- The number of solution of $x^{\log_x(x+3)^2} = 16$ is -(i)
 - (1) 0

- (2) 1 (3) 2 (4) ∞
- Solution set of the equation (ii)

$$\frac{1}{4} x^{\log_2 \sqrt{x}} = (2^{1/4}) (\log_2 x)^2$$
 is -

- (1) ϕ (2) $\{4^{-\sqrt{2}}\}$
- (3) $\{4^{\sqrt{2}}\}$
- (4) None of these
- Solution set of $x^{\log_4 x} = 2^{3(\log_4 x + 3)}$ is -(iii)
 - (1) {64, 1/8}
- $(2) \{64\}$
- (3) {1/8}
- $(4) \phi$
- **Q.44** Given: $|x-1| + |x-2| = \lambda$ where $\lambda \in R$ then answer the following
- If $\lambda = 6$ then x belongs to (i)

$$(1)\left[-\frac{3}{2},\frac{9}{2}\right] \qquad (2)\left(-\frac{3}{2},\frac{9}{2}\right)$$

$$(2)\left(-\frac{3}{2},\frac{9}{2}\right)$$

(3)
$$\left\{-\frac{3}{2}, \frac{9}{2}\right\}$$

(4) None

If $\lambda = 0$ then x belongs to (ii)

$$(1) \{3\}$$

$$(2) \{-1, 6\} (3) \{1, 2\} (4) \phi$$

(iii) If $\lambda = 1$ then x belongs to

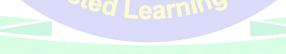
$$(1) x \in (1, 2)$$

$$(2) x \in [1, 2)$$

(3)
$$x \in (1, 2]$$

$$(4) x \in [1, 2]$$

MATCH THE COLUMN TYPE QUESTIONS


Q.45 Match the following:

Column I	Column II
(1) If \log_3 (5 + $8\log_{49}$ (5 + 4	(P) 0
log ₄₉ 7))	-
= k then value of k is	
(2) No. of roots of equation	(Q) 1
$\log_x (x^2 - 1) = 0$ is	6 6

(3) If
$$x = \sqrt{9 + \sqrt{77}}$$
 then
value of $\frac{1}{11} \left(x + \frac{2}{x} \right)^2$ is
 $(4) \sqrt{(\log_{.5} 4)^2}$ (S) -2

Q.46 Match the following:

	_					
	Column-I	Column-II				
	(1) $\log_{\sin x} \log_3 \log_{0.2} x < 0$	(P) $x \in [-1, 1]$				
	(2) $\frac{(e^x-1)(2x-3)(x^2+x+2)}{(\sin x-2)x(x+1)}$	(Q) $x \in [-3, 6]$				
500	$\frac{(2)}{(\sin x - 2)x(x + 1)}$					
	≤ 0					
4						
	(3) $ 2 - [x] - 1 \le 2$, [.]	$(R) x \in (0,$				
	represents greatest	1/125)				
	integer function					
	(4) $ \sin^{-1}(3x - 4x^3) \le \pi/2$	(S) $x \in (-\infty, -\infty)$				
		1) 🔾				
		$\left[\frac{3}{2},\infty\right)$				

ANSWER KEY

RANKER'S STUFF

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	4	4	2	3	4	3	1	4	3	2	3	4	3	3
Qus.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	4	1	2	3	4	2	4	3	2	2	3	3	1	512	4
Qus.	31	32	33	34	35	36	37	38	39	40	41	42	43(i)	43(ii)	43(iii)
Ans.	9	0	4	0	1	4	4	2	1,2,3,4	3,4	2,3	1,3,4	1	3	1
Qus.	44(i)	44(ii)	44(iii)												
Ans.	1	4	4				1 5								

Q.45 (1) \rightarrow R,S; (2) \rightarrow Q; (3) \rightarrow R; (4) \rightarrow R

Q.46 (1) \rightarrow R, (2) \rightarrow S, (3) \rightarrow Q, (4) \rightarrow P

