Chapter

Some Basic Concepts of Chemistry

JEE RANKER'S STUFF

SINGLE CORRECT QUESTION

- 4.0 g of caustic soda (molar mass = 40) contains Q.1 same number of sodium ions as are present in-
 - (1) 10.6 g of Na₂CO₃ (mol. mass 106)
 - (2) 58.5 g of NaCl (Formula mass 58.5)
 - (3) 7.1 g of Na₂SO₄ (Formula mass 142)
 - (4) 1 mol of NaNO₃ (mol. mass 85)
- **Q.2** A gaseous mixture contains $CO_2(g)$ and $N_2O(g)$ in 2:5 ratio by mass. The ratio of the number of molecules of CO₂(g) and N₂O(g) is:
 - (1) 5 : 2(2) 2 : 5
- (3) 1:2 (4) 5:4
- Weight of oxygen in Fe₂O₃ and FeO is in the simple ratio for the same amount of iron is:
 - (1)3:2(2) 1 : 2
- (3) 2:1 (4) 3:1
- The pair of species having same percentage (mass) of carbon is:
 - (1) CH₃COOH and C₆H₁₂O₆
 - (2) CH₃COOH and C₂H₅OH
 - (3) HCOOCH₃ and C₁₂H₂₂O₁₁
 - (4) $C_6H_{12}O_6$ and $C_{12}H_{22}O_{11}$
- Q.5 Calculate the molecular formula of compound which contains 20% Ca and 80% Br (by wt.) if molecular weight of compound is 200. (Atomic wt. Ca = 40, Br = 80)
 - (1) $Ca_{1/2}Br$ (2) $CaBr_2$ (3) CaBr (4) Ca_2Br
- Q.6 The minimum quantity in gram of H₂S needed to precipitate 63.5 g of Cu⁺² will be nearly $Cu^{+2} + H_2S \longrightarrow CuS + 2H^+$
 - (1) 63.5 g (2) 31.75 g (3) 34 g (4) 20 g

- Phosphine (PH₃) decomposes to produce **Q.7** vapours of phosphorus and H₂ gas. What will be the change in volume when 100 mL of phosphine is decomposed?
 - $4PH_3(g) \longrightarrow P_4(g) + 6H_2(g)$
 - (1) + 50 mL
- (2) 500 mL
- $(3) + 75 \, \text{mL}$
- (4) 500 mL
- Calculate the amount of Ni needed in the Q.8 Mond's process given below

$$Ni + 4CO \longrightarrow Ni(CO)_4$$

If CO used in this process is obtained through a process, in which 6 g of carbon is mixed with 44 $g CO_2$.

- (1) 14.675 g
- (2) 29 g
- (3) 58 g
- (4) 28 g
- **Q.9** A + B \rightarrow A₃B₂ (unbalanced)

 $A_3B_2 + C \rightarrow A_3B_2C_2$ (unbalanced)

Above two reactions are carried out by taking 3 moles each of A and B and one mole of C. Then which option is/are correct?

- (1) 1 mole of A₃B₂C₂ is formed
- (2) 1/3 mole of A₃B₂C₂ is formed
- (3) 1/2 mole of A₃B₂ is formed
- (4) 1/2 mole of A₃B₂ is left finally
- Q.10 What is the molarity of H₂SO₄ solution that has a density of 1.84 g/cc and contains 98% by mass of H_2SO_4 ? (Given atomic mass of S = 32)
 - (1) 4.18 M
- (2) 8.14 M
- (3) 18.4 M
- (4) 18 M
- Q.11 125 mL of 8% w/w NaOH solution (specific gravity 1) is added to 125 mL of 10% w/v HCl solution.

The nature of resultant solution would be

- (1) Acidic
- (2) Basic
- (3) Neutral
- (4) None
- Q.12 An organic compound having molecular mass 60 is found to contain C = 20%, H = 6.67% and N = 46.67% while rest is oxygen. On heating it gives NH₃ along with a solid residue. The solid residue give violet colour with alkaline copper sulphate solution. The compound is -
 - (1) (NH₂)₂CO
- (2) CH₃CH₂CONH₂
- (3) CH₃NCO
- (4) CH₃CONH₂
- Q.13 The density of a solution prepared by dissolving 120 g of urea (mol. mass = 60 u) in 1000 g of water is 1.15 g/mL. The molarity of this solution is:
 - (1) 2.05 M (2) 0.50 M (3) 1.78 M(4) 1.02 M
- **Q.14** A gaseous hydrocarbon gives upon combustion 0.72 g of water and 3.08 g of CO₂. The empirical formula of the hydrocarbon is

- (1) C_2H_4 (2) C_3H_4 (3) C_6H_5 (4) C_7H_8
- Q.15 A certain alkaloid has 70.8% carbon, 6.2% hydrogen, 4.1% nitrogen and the rest oxygen. What is its empirical formula?
 - (1) C₂₀H₂₁NO₄
- $(2) C_{20}H_{20}NO_4$
- $(3) C_{21}H_{20}NO_3$
- (4) C₂₀H₁₉NO₃
- Q.16 CaCO₃ is 90% pure. Volume of CO₂ collected at STP when 10 g of CaCO₃ is decomposed is -
 - (1) 2.016 litres
- (2) 1.008 litres
- (3) 10.08 litres
- (4) 20.16 litres
- Q.17 50 g CaCO₃ will react with g of 20% HCl by weight.
 - (1) 36.5 gm
- (2) 73 gm
- (3) 109.5 gm
- (4) 182.5 gm
- Q.18 0.01 mole of iodoform (CHI₃) reacts with Ag to produce a gas whose volume at NTP is

$$2CHI_3 + 6Ag \rightarrow C_2H_2 + 6Ag I(s)$$

- (1) 224 ml
- (2) 112 ml
- (3) 336 ml
- (4) None of these
- Q.19 The minimum quantity in grams of H₂S needed to precipitate 63.5 g of Cu²⁺ will be nearly: Cu⁺² $+ H_2S \rightarrow CuS + H_2$
 - (1) 63.5 g
- (2) 31.75 g
- (3) 34 g
- (4) 20 g
- Q.20 2.76 g of silver carbonate on being strongly heated yields a residue weighing

$$Ag_2 CO_3 \rightarrow 2Ag + CO_2 + \frac{1}{2} O_2$$

(1) 2.16 g

- (2) 2.48 g
- (3) 2.32 g
- (4) 2.64 g
- Q.21 The volume of gas at NTP produced by 100 g of CaC₂ with water:-

$$CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2$$

- (1) 70 litre
- (2) 35 litre
- (3) 17.5 litre
- (4) 22.4 litre
- Q.22 How many moles of magnesium phosphate, Mg₃(PO₄)₂ will contain 0.25 mole of oxygen atoms?
 - $(1) 2.5 \times 10^{-2}$
- (2) 0.02
- $(3) 3.125 \times 10^{-2}$
- $(4) 1.25 \times 10^{-2}$
- Q.23 A sample of ammonium phosphate (NH₄)₃PO₄ contains 3.18 mol of H atoms. The number of mol of O atoms in the sample is:
 - (1) 0.265
- (2) 0.795
- (3) 1.06
- (4) 3.18
- Q.24 1 g of HCl and 1gm of MnO₂ heated together the maximum weight of Cl₂ gas evolved will be $[MnO₂ + 4HCl \rightarrow MnCl₂ + Cl₂ + 2H₂O]$
 - (1) 2g
- (2) 0.975 g
- (3) 0.486g
- (4) 0.972 g
- Q.25 Cortisone is a molecular substance containing 21 atoms of carbon per molecule. The mass percentage of carbon in cortisone is 69.98%. Its molar mass is:
 - (1) 176.5
- (2) 252.2
- (3) 287.6
- (4) 360.1

CHEMISTRY

- Q.26 The empirical formula of a compound of molecular mass 120 is CH₂O. The molecular formula of the compound is:
 - (1) $C_2H_4O_2$
- $(2) C_4H_8O_4$
- $(3) C_3H_6O_3$
- (4) all of these
- Q.27 1 litre of a hydrocarbon weights as much as one litre of CO₂. Then the molecular formula of the hydrocarbon is:

 - (1) C_3H_8 (2) C_2H_6
- $(3) C_2H_4 (4) C_3H_6$
- Q.28 The volume of oxygen required for complete combustion of 20 ml of ethene is
 - (1) 30 ml (2) 60 ml (3) 40 ml (4) 50 ml
- **Q.29** When sodium bicarbonate is heated 3.6×10^{24} molecules of water are obtained. Find the moles of sodium bicarbonate heated.
 - $NaHCO_3 \longrightarrow Na_2CO_3 + CO_2 + H_2O$
 - (2) 12
 - - (<mark>3)</mark> 9 (4) 8
- Q.30 Equal moles of H₂O and NaCl are present in a solution. Hence, molality of NaCl solution is:
 - (1) 0.55

(1)6

- (2) 55.5
- (3) 1.00
- (4) 0.18
- Q.31 Decreasing order of mass of pure NaOH in each of the aqueous solution.
 - (I) 50 g of 40% (W/W) NaOH
 - (II) 50 ml of 50% (W/V) NaOH ($d_{sol} = 1.2 \text{ g/ml}$).
 - (III) 50 g of 15 M NaOH ($d_{sol} = 1 \text{ g/ml}$).
 - (1) I, II, III
- (2) 111, 11, 1
- (3) 11, 111, 1
- (4) | | | = | | = |
- Q.32 The density (in g mL⁻¹) of a 3.60 M sulphuric acid solution that is 29% (H₂SO₄ molar mass = 98 g mol⁻¹) by mass will be:

 - (1) 1.22 (2) 1.45
- (3) 1.64 (4) 1.88
- Q.33 A 5.2 molal aqueous solution of methyl alcohol, (CH₃OH), is supplied. What is the mole fraction of methyl alcohol in the solution?
 - (1) 0.100
- (2) 0.190
- (3) 0.086
- (4) 0.050

NUMERICAL VALUE TYPE QUESTIONS

- Q.34 What volume of a liquid (in L) will contain 10 mole ? If molar mass of liquid is 280 and its density is 1.4g/mL.
- Q.35 Calculate the total moles of atoms of each element present in 122.5 g of KClO₃.
- Q.36 A sample of gaseous hydrocarbon occupying 1.12 litre at NTP. when completely burnt in air produced 2.2 g CO₂ and 1.8 g H₂O Calculate the weight of hydrocarbon taken.
- Q.37 Chemical absorbers can be used to remove exhaled CO₂ of space travellers in short space flights. Li₂O is one of the most efficient in terms of absorbing capacity pre unit weight. If the reaction is $Li_2O + CO_2 \rightarrow LiCO_3$. What is the absorption efficiency of pure Li₂O in litre CO₂ (STP) per kg? [atomic weight of Li = 7]
- Q.38 What volume of water is required to make 0.20 N solution from 1600 mL of 0.2050 N solution?
- Q.39 Calculate normality of NH₄OH when 2 g is present in 800 mL solution.
- Q.40 Density of ozone relative to methane under the same temperature & pressure conditions is :
- Q.41 Formation of polyethene from calcium carbide takes place as follows:

$$CaC_2 + H_2O \rightarrow Ca(OH)_2 + C_2H_2 \rightarrow C_2H_4$$
; $n(C_2H_4) \rightarrow (-CH_2-CH_2-)n$.

- The amount of polyethylene possibly obtainable from 64.0 kg CaC₂ can be
- Q.42 21.6 g of silver coin is dissolved in HNO₃. When NaCl is added to this solution, all silver is precipitated as AgCl. The weight of AgCl is found to be 14.35 g then % of silver in coin is:
- **Q.43** The molality of a sulphuric acid solution is 0.2. Calculate the total weight of the solution having 1000 g of solvent.

STATEMENT TYPE QUESTIONS

Each question contains STATEMENT-1 (Assertion) and STATEMENT-2 (Reason.)

Examine the statements carefully and mark the correct answer according to the instructions given below:

- (A) If both the statements are correct and STATEMENT-2 is the correct explanation of STATEMENT-1.
- (B) If both the statements are correct but STATEMENT-2 is NOT the correct explanation of STATEMENT-1.
- (C) If STATEMENT-1 is correct and STATEMENT-2 is incorrect.
- (D) If STATEMENT-1 is incorrect and STATEMENT-2 is correct.
- Q.44 STATEMENT-1: Specific gravity is dimensionless.

 STATEMENT-2: Specific gravity is density of a substance measured w.r.t. density of water at 4°C
 - (1) A
- (2) B
- (3) C
- (4) D
- Q.45 STATEMENT-1: Gram molecular mass of O₂ is 32g.

STATEMENT-2: Relative atomic mass of oxygen is 32 a.m.u.

- (1) A
- (2) B
- (3) C
- (4) D
- **Q.46 STATEMENT-1:** Molarity of pure water is 55.55 M at 298 K.

STATEMENT-2: Molarity is temperature dependent.

- (1) A
- (2) B
- (3) C
- (4) D
- **Q.47 STATEMENT-1:** The number of atoms in a given mass of dioxygen (oxygen) and trioxygen (ozone) gasses is same

STATEMENT-2: The number of atoms depends on atomic mass, not on molecular mass.

- (1) A
- (2) B
- (3) C
- (4) D

MORE THAN ONE CORRECT TYPE QUESTIONS

- **Q.48** Which of the following statement regarding the compound A_xB_y is/are correct
 - (1) 1 mole of A_xB_y contains 1 mole of A and 1 mole B
 - (2) 1 equivalent of A_xB_y contains 1 equivalent of A and 1 equivalent of B
 - (3) 1 mole of A_xB_y contains x moles of A and Y moles of B
 - (4) equivalent mass of A_xB_y = equivalent mass of A + equivalent mass of B
- Q.49 Solution containing 23 g HCOOH is /are:
 - (1) 46 g of 70% $\left(\frac{W}{V}\right)$ HCOOH $(d_{solution} = 1.40)$

g/mL

- (2) 50 g of 10 M HCOOH ($d_{solution} = 1 \text{ g/mL}$)
- (3) 50 g of 25% $\left(\frac{w}{w}\right)$ HCOOH
- (4) 46 g of M HCOOH ($d_{solution} = 1 \text{ g/mL}$)
- Q.50 Which of the following statement(s) is/are correct for water?
 - (1) H and O are in 2: 1 atomic ratio
 - (2) H and O are in 2:1 mass ratio
 - (3) H and O are in 1:8 mass ratio
 - (4) Hydrogen and oxygen gases are combined in 2:1 volume ratio
- Q.51 The oxygen needed for complete combustion of
 - 8g CH₄ may be obtained from complete decomposition of
 - (1) 2/3 mole KClO₃
 - (2) 1 mole of H₂O₂
 - (3) 2 mole of NaNO₃ (up to 300°C)
 - (4) 2 mole of BaO₂
- **Q.52** When hydrocarbons are burnt completely in excess of oxygen gas, then
 - (1) equal moles of CO₂ and H₂O are formed form alkenes.
 - (2) more moles of H₂O than CO₂ are formed from alkanes.

- (3) more moles of CO_2 then H_2O are formed from alkynes
- (4) more moles of CO₂ then H₂O are formed for any kind of hydrocarbon

COMPREHENSION TYPE QUESTIONS

Q.53 Oleum is considered as a solution of SO₃ in H₂SO₄. Which is obtained by passing SO₃ in solution of H₂SO₄. When 100 g sample of oleum is diluted with desired mass of H₂O then the total mass of H₂SO₄ obtained after dilution is known as % labelling in oleum.

For example, A oleum bottle labelled as '109% H_2SO_4 ' means the 109 g total mass of pure H_2SO_4 will be formed when 100 g of oleum is diluted by 9 g of H_2O which combines with all the free SO_3 present in oleum to form H_2SO_4 as $SO_3 + H_2O \rightarrow H_2SO_4$.

- (i) What is the % of free SO_3 in an oleum that is labelled as '104.5% H_2SO_4 '?
 - (1) 10
- (2) 20
- (3)40
- (4) None
- (ii) 9.0 g water is added into oleum into sample labelled as "112%" H_2SO_4 then the amount of free SO_3 remaining in the solution is : (STP = 1 atm and 273 K)
 - (1) 14.93 L at STP
- (2) 7.46 L at STP
- (3) 3.73 L at STP
- (4) 11.2 L at STP
- (iii) If excess water is added into bottle sample labelled as "112% H₂SO₄" and is reacted with 5.3 & Na₂CO₃, then find the volume of CO₂ evolved at 1 atm pressure and 300 K temperature after the completion of the reaction:
 - (1) 2.46 L (2) 24.6 L (3) 1.23 L (4) 12.3 L
- (iv) 1 g of oleum sample is diluted with water. The solution required 54 mL of 0.4 N NaOH for complete neutralization. The % of free SO $_3$ in the sample is :
 - (1)74
- (2)26
- (3)20
- (4) None of these
- **Q.54** Consider the following series of reactions

- $Cl_2 + 2NaOH \rightarrow NaCl + NaClO + H_2O$ $3NaClO \rightarrow 2NaCl + NaClO_3$ $4NaClO_3 \rightarrow 3NaClO_4 + NaCl$
- (i) How much Cl_2 is required prepare 122.5 g of $NaClO_4$ by above sequential reaction?
 - (1) 284 g (2) 213 g (3) 142 g (4) 71 g
- (ii) How many moles of NaCl will be formed by using 1 mole Cl₂ and other reagents in excess?
 - (1) $\frac{1}{12}$ mole
- (2) 1.67 mole
- (3) 1.75 mole
- (4) 0.75 mole
- (iii) How many moles of NaClO₃ obtained after the complection of reaction by taking 1 mole Cl₂ and other reagents in excess?
 - (1) $\frac{1}{3}$ mole
- (2) Zero
- (3) $\frac{1}{4}$ mole
- (4) 1 mole

MATCH THE COLUMN TYPE QUESTIONS

Q.55 Match the column.

Column-I	Column-II						
(A) 44 g CO ₂ gas	(P) 1 g molecule						
(B) 35.2 g of CH ₄	(Q) N _A molecule						
(C) 48 g of O ₃ gas	(R) 22 N _A electrons						
(D) 44 g of N ₂ O gas	(S) 49.28 L at 1 atm						
	and 273 K						
	(T) N _A atoms of						
	oxygen						

(1) $A \rightarrow R$, P, Q; $B \rightarrow R$, S; $C \rightarrow P$, Q; $D \rightarrow P$, Q, R, T

(2) $A \rightarrow P$, Q, R; $B \rightarrow R$, S; $C \rightarrow P$, Q; $D \rightarrow P$, R, Q, T

(3) $A \rightarrow P$, Q, R; $B \rightarrow R$, S; $C \rightarrow P$, Q; $D \rightarrow P$, Q, R, T

(4) $A \rightarrow P$, Q, R; $B \rightarrow S$, R; $C \rightarrow P$, Q; $D \rightarrow P$, Q, R, T

Q.56 Match the column.

Column-I	Column-II							
(A) 0.5 mole of	(P) Occupy 11.2 L at 1							
SO ₂ (g)	atm and 273 K							
(B) 1 g of H ₂ (g)	(Q) Weighs 24 g							
(C) 0.5 mole of	(R) Total no. of atoms							
O ₃ (g)	= 1.5 × N _A							
(D) 1 g molecule	(S) Weighs 32 g							
of O ₂ (g)								

(1) $A \rightarrow P$, R, S; $B \rightarrow P$; $C \rightarrow Q$, R, P; $D \rightarrow S$

(2) $A \rightarrow P$, S, R; $B \rightarrow P$; $C \rightarrow P$, Q, R; $D \rightarrow S$

(3) $A \rightarrow S$, R, P; $B \rightarrow R$; $C \rightarrow P$, R, Q; $D \rightarrow P$

(4) A \rightarrow P, R, S; B \rightarrow P; C \rightarrow P, Q, R; D \rightarrow S

ited Learning

ANSWER KEY

JEE RANKER'S STUFF

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	2	1	1	2	3	3	1	4	3	1	1	1	4	1
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	1	4	2	3	1	2	3	3	3	4	2	1	2	2	2
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	2	1	3	0.8	0	2	746.7	40	0.07	3	28	50	1020	1	3
Que.	46	47	48	49	50	51	52	53 (i)	53 (ii)	53 (iii)	53 (iv)	54 (i)	54 (ii)	54 (iii)	55
Ans.	2	1	2,3,4	1,2	1,3,4	1,3,4	1,2,3	2	3	3	2	1	3	2	3
Que.	56														
Ans.	4														

