Chapter

Chemical Bonding

TOPIC WISE QUESTIONS

VALENCY

- **Q.1** Which of the species follows octet rule:
 - (1) IBr₅
- $(2) N^{3-}$
- (3) SF₄
- (4) Pb+4
- Q.2 Which of the following compound exist
 - $(1) B_2F_6$
- (2) B_2H_6
- (3) Al_2F_6 (4) B_2Cl_6
- **Q.3** Which one of the following element will never be obeyed octet rule:
 - (1) Na
- (2) F
- (3)S
- (4) H
- Q.4 In which of the following molecule electron of 2s in carbon is not promoted to 2p sub shell:
 - (1) HCN
- (2) CO_2
- (3) CS₂
- (4) CO
- **Q.5** What is the oxidation state of C in CO molecule:
 - (1) + 2
- (2) + 3
- (3) + 4
- (4) + 1
- **Q.6** Which is not an exception to octet rule?
 - (1) BF₃
- (2) SnCl₄ (3) BeI₂
- (4) CIO₂
- Q.7 Which of the following pair has electron deficient compounds:
 - (1) B_2H_6 , AICl₃
- (2) C₂H₆, Al₂Cl₆
- (3) SF₂, Cl₂O
- (4) NaBH₄, ICl
- Q.8 Valency expresses generally:
 - (1) Total e in an atom
 - (2) Atomicity of an element
 - (3) Oxidation number of an element
 - (4) Combining capacity of an element
- Q.9 Which element do not have valency equals to its group no:
 - (1) Sodium
- (2) Aluminium
- (3) Oxygen
- (4) Carbon
- Q.10 An oxide of chlorine which is an odd electron molecule is:
 - (1) CIO₂
- (2) Cl_2O_6
- (3) Cl₂O₇ (4) Cl₂O

VBT AND OVERLAPPING

- **Q.11** In a triple bond there is sharing of :
 - (1) 3-electrons
- (2) 4-electrons
- (3) Several electrons (4) 6-electrons

- **Q.12** The triple bond in $C \stackrel{\leftarrow}{=} 0$ is made up of :
 - (1) Three sigma bonds
 - (2) Three π -bonds
 - (3) One sigma and two π -bonds
 - (4) Two sigma and one π -bond
- **Q.13** The strength of bonds by 2s 2s, 2p 2p and 2p -2s overlapping has the order :-
 - (1) s s > p p > s p
 - (2) s s > p s > p p
 - (3) p p > s p > s s
 - (4) p p > s s > p s
- Q.14 Which of the following configuration shows second excitation state of lodine:-
 - (1) 11 1 1 1
 - (2) 11 1 1 1 1
 - (3) 11 1 1 1 1 1
 - **(4)** | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
- Q.15 Variable covalency is exhibited by:-
 - (1) P and S
- (2) N and O
- (3) N and P
- (4) F and Cl
- Q.16 A sigma bond is formed by the overlapping of:
 - (1) s-s orbital only
 - (2) s and p orbitals only
 - (3) s–s, s–p or p–p orbitals along internuclear axis
 - (4) p-p orbital along the sides
- Q.17 Which of the following bonds will have directional character?
 - (1) Ionic bond
 - (2) Metallic bond
 - (3) Covalent bond
 - (4) Both covalent & metallic
- **Q.18** Which is not characteristic of π -bond?
 - (1) π bond is formed when a sigma bond already formed
 - (2) π bond are formed from hybrid orbitals

- (3) π bond may be formed by the overlapping of p-orbitals
- (4) π -bond results from lateral overlap of atomic orbitals
- **Q.19** Which of the following statements is not correct?
 - (1) Double bonds is shorter than a single bond
 - (2) σ bond is weaker than a π bond
 - (3) Double bond is stronger than a single bond
 - (4) Covalent bond is stronger than a hydrogen bond
- **Q.20** The boiling point of ICl is nearly 40°C higher than that of Br₂ although the two substances have the same relative molecular mass. This is because:-
 - (1) ICl is ionic compound
 - (2) I-Cl bond is stronger than Br Br bond
 - (3) ICl is polar covalent molecule while Br₂ is non polar
 - (4) IP of lodine is less than that of Br.
- Q.21 Covalent bond is formed by
 - (1) Combination of ions
 - (2) Combination of half filled orbitals
 - (3) Exchange of electrons by atom
 - (4) None of above
- Q.22 The type of bond formed between two electronegative atoms would be
 - (1) Covalent
- (2) Ionic
- (3) Co-ordinate
- (4) All the above
- Q.23 Nitrogen does not form NF₅ because
 - (1) Nitrogen is member of V group
 - (2) It contains no empty d-orbital
 - (3) The bond energy of $N \equiv N$ is very high
 - (4) Inert pair effect exists in the molecule

RESONANCE AND FORMAL CHARGE

Q.24 One of the resonating structure of SO_4^{-2} is

Which set of formal charge on oxygen and bond order is correct

- (1) 0.5 and 1.5
- (2) 1.5 and 3
- (3) 2 and 3
- (4) 1.5 and 1.5
- **Q.25** The correct order of the O-O bond length in O_2 , H_2O_2 and O_3 is:
 - (1) $O_3 > H_2O_2 > O_2$
- (2) $O_2 > H_2O_2 > O_3$

- (3) $O_2 > O_3 > H_2O_2$
- (4) $H_2O_2 > O_3 > O_2$
- Q.26 Higher is the bond order, greater is -
 - (1) Bond dissociation energy
 - (2) Covalent character
 - (3) Bond length
 - (4) Paramagnetism
- Q.27 In PO₄³⁻, the formal charge on each oxygen atom and the P-O bond order respectively are:
 - (1) 0.75, 0.6
- (2) 0.75, 1.0
- (3) 0.75, 1.25
- (4) 3, 1.25
- Q.28 In which of the following Lewis dot structure is written with incorrect formal charge?
 - (1) $: \stackrel{\circ}{N} = \stackrel{\circ}{N} \stackrel{\circ}{N} :$ (2) $: \stackrel{\circ}{C} = \stackrel{\circ}{C} :$ (3) $: \stackrel{\circ}{N} = \stackrel{\circ}{N} = \stackrel{\circ}{N} :$ (4) $: \stackrel{\circ}{N} = \stackrel{\circ}{N} = \stackrel{\circ}{N} :$
- **Q.29** The species having no $p\pi$ - $p\pi$ bond but has bond order equal to that of O₂:
 - (1) ClO_3^- (2) PO_4^{3-} (3) SO_4^{2-}
- $(4)XeO_{3}$
- **Q.30** Bond order and formal charge of perchlorate ion are:
 - (1) 1.75 and -1
- (2) 1.75 and -0.33
- (3) 1.66 and -0.33
- (4) 1.50 and -0.50

HYBRIDISATION, VSEPR THEORY AND GEOMETRY

- Q.31 In the protonation of H₂O, change occurs in
 - (1) Hybridisation state of oxygen
 - (2) Shape of molecule
 - (3) Hybridisation and shape both
 - (4) None
- Q.32 The d- orbitals involved in sp³d hybridisation is:-
 - $(1) d_{x^2-y^2}$ $(2) d_{z^2}$
- (3) d_{xy}
- Q.33 A sp³ hybrid orbital contains:-

- (1) $\frac{3}{4}$ s character (2) $\frac{1}{4}$ p character (3) $\frac{3}{4}$ p character (4) $\frac{1}{2}$ s character
- Q.34 Among the following species identify the isostructural pairs:-

 NF_3 , NO_3^- , BF_3 , H_3O^+ , HN_3

- (1) $[NF_3, NO_3^-]$ and $[BF_3, H_3O^+]$
- (2) $[NF_3, HN_3]$ and $[NO_3^-, BF_3]$
- (3) $[NF_3, H_3O^+]$ and $[NO_3^-, BF_3]$
- (4) $[NF_3, H_3O^+]$ and $[HN_3, BF_3]$
- Q.35 Which of the set of species have same hybridisation state but different shapes:-
 - (1) NO_2^+ , NO_2 , NO_2^-
- (2)*ClO*₄, SF₄, XeF₄

- $(3) NH_4^+, H_3O^+, OF_2$
- $(4)SO_4^{-2}, PO_4^{-3}, ClO_4^{-1}$
- Q.36 In which following set of compound/ion has linear geometry:-
 - (1) CH_4 , NH_4^+ , BH_4^-
- $(2) CO_4^{-2}, NO_4^{-}, BF_3$
- (3) NO_2^+ , CO_2 , XeF_2 (4) $BeCl_2$, BCl_3 , CH_4
- Q.37 Which of the following set is not correct:
 - (1) SO₃, O₃, NH₄⁺ all have coordinate bonds
 - (2) H₂O, NO₂, ClO₂, all are 'V' shape molecules
 - (3) I_3^- , ICl_2^- , NO_2^+ ; all are linear molecules
 - (4) SF₄, SiF₄ XeF₄ are tetrahedral in shape
- **Q.38** Hybridisation in XeOF₂, XeO₂F₂ is sp³d. But shape will be respectively:-
 - (1) T, 'V' shape
 - (2) T shape, See-Saw
 - (3) Both have T shape
 - (4) T shape, irregular octahedral
- **Q.39** The shape of IF_4^+ will be :-
 - (1) Square planar
 - (2) Tetrahedral
 - (3) Pentagonal bipyramidal
 - (4) Distorted tetrahedral
- **Q.40** Hybridisation state of I in ICl₂⁺ is
 - (1) dsp²
- (2) sp
- $(3) sp^3$
- $(4) sp^2$
- Q.41 The regular geometry of XeO₂F₂is:
 - (1) Plane triangular
 - (2) Trigonal bipyramidal
 - (3) Square planar
 - (4) Tetrahedral
- Q.42 Incorrect code regarding shape is :-
 - (1) Linear : N_3^- , (CN)₂, ICl_2^-
 - (2) Pyramidal: CH₃-, NH₃, XeO₃
 - (3) Trigonal planar : CH_3^{\oplus} , CH_3 , CH_3^{Θ}
 - (4) Tetrahedral: SiH₄, XeO₄, PCl₄⁺
- **Q.43** Hybridization involves
 - (1) Addition of an electron pair
 - (2) Mixing up of atomic orbitals
 - (3) Removal of an electron pair
 - (4) Separation of orbitals
- **Q.44** Which is having maximum % of s character?
 - (1) C C
- (2) C=C
- (3) C≡C
- (4) None
- Q.45 The structure and hybridization of Si(CH₃)₄ is:
 - (1) bent, sp

- (2) trigonal, sp²
- (3) octahedral, sp3d
- (4) tetrahedral, sp³
- Q.46 Among the following compounds the one that is polar and has the central atom with sp³ hybridisationis:
 - (1) H_2CO_3 (2) SiF_4
- (3) BF₃
- (4) HClO₂
- Q.47 Which of the following molecule has regular geometry -
 - (1) H_2O
- (2) PF₃
- $(3) SF_6$
- (4) XeF₆
- Q.48 In sulphate ion the oxidation state of sulphur is +6 and hybridization state of sulphur is:
 - $(1) sp^2$
- (2) sp^3d^2 (3) dsp^3
- Q.49 The xenon compound(s) that are iso-structural with IBr_2^- and BrO_3^- respectively are :
 - (1) Linear XeF₂ and pyramidal XeO₃
 - (2) Bent XeF₂ and pyramidal XeO₃
 - (3) Bent XeF₂ and planar XeO₃
 - (4) Linear XeF₂ and tetrahedral XeO₃
- Q.50 VSEPR theory does not state:
 - (1) The order of repulsion between different pair of electrons is lp - lp > lp - bp > bp - bp(Ip = lone pair electrons, bp = bond pair of electrons)
 - (2) As the number of lone pair of electrons on central atom increase, the deviation in BA from normal BA (Bond-Angle) also increase
 - (3) The number of lone pair on O in H₂O is 1 while on N in NH₃ is 2.
 - (4) The structure of Xenon-flurides and Xenonoxyfluorides could be explained on the basis of VSEPR theory.

BOND ANGLE

- Q.51 When the hybridization state of carbon atom changes from sp³, sp² and sp, the angle between the hybridized orbitals.
 - (1) decrease considerably
 - (2) increase progressively
 - (3) decrease gradually
 - (4) all of these
- Q.52 By the hybridization of one s & one p orbitals it will be obtained
 - (1) Two orbitals mutually at 90° angle
 - (2) two orbitals mutually at 180° angle
 - (3) Two orbitals mutually at 120° angle
 - (4) Two orbitals mutually at 150° angle

- Q.53 In compounds X, all the bond angles are exactly 109°28', X is:
 - (1) Chloromethane
 - (2) Carbon tetrachloride
 - (3) lodoform
 - (4) Chloroform
- Q.54 Among the following orbital/bonds, the angle is minimum between:
 - (1) sp³ bonds
 - (2) p_x and p_y orbitals
 - (3) H-O-H bond in water
 - (4) sp bonds
- **Q.55** There is no effect of lone pair on bond angle in :
 - (1) XeF_2 , ICl_4^-
- (2) BF₃, OF₂
- (3) IF₅, NH₃
- $(4) I_3^-, I_3^+$
- **Q.56** \angle F- As -F Bond angle in AsF₃Cl₂ molecules is :
 - (1) 90° and 180°
- (2) 120°
- (3) 90°
- (4) 180°

DIPOLE MOMENT

- Q.57 Which statement is correct:-
 - (1) All the compounds having polar bonds, have dipole moment
 - (2) SO₂ is non-polar
 - (3) H₂O molecule is non polar, having polar bonds
 - (4) PH₃ is polar molecule having non polar bonds
- Q.58 BeF₂ has zero dipole moment where as H₂O has a dipole moment because :-
 - (1) Water is linear
 - (2) H₂O is bent
 - (3) F is more electronegative than O
 - (4) Hydrogen bonding is present in H₂O
- Q.59 The dipole moment of NH₃ is:-
 - (1) Less than dipole moment of NCl₃
 - (2) Higher than dipole moment of NCl₃
 - (3) Equal to the dipole moment of NCl₃
 - (4) None of these
- **Q.60** An example of a polar covalent molecule is
 - $(1) S_8$
- (2) H O H
- (3) Na⁺Cl⁻
- (4) F F
- Q.61 Which of the following molecules has polar character?
 - (1) CO₂
- (2) CH₄
- (3) PF₅
- (4) NH₃
- Q.62 PCl₅ is non polar because :-
 - (1) P Cl bond is non-polar
 - (2) Its dipole moment is zero

- (3) P Cl bond is polar
- (4) P & CI have equal electronegativity
- Q.63 Which contains both polar and non-polar bonds?
 - (1) NH₄Cl (2) HCN
- $(3) H_2O_2$
 - (4) CH₄
- Q.64 The correct order of dipole moment is:
 - (1) $CH_4 < NF_3 < NH_3 < H_2O$
 - (2) NF₃< CH₄< NH₃< H₂O
 - (3) NH₃< NF₃< CH₄< H₂O
 - (4) $H_2O < NH_3 < NF_3 < CH_4$

COORDINATE BOND

- Q.65 Which species do not exists:
 - (1) AIF_6^{-3} (2) BF_4^{-}
- (3) BeF₄⁻² (4) CCl_6^{2-}
- Q.66 Which of the following contains Co-ordinate and covalent bonds:
 - (a) $N_2H_5^+$ (b) H_3O^+ (c) HCl
- (d) H_2O

Correct answer is:

- (1) a & d (2) a & b (3) c & d (4) Only a

- **Q.67** In Co-ordinate bond, the acceptor atoms must essentially contain in its valency shell an orbital:
 - (1) With paired electron
 - (2) With single electron
 - (3) With no electron
 - (4) With three electron
- **Q.68** No. of σ and π bonds in C₂(CN)₄ are respectively:
 - (1) 9 σ , 9π
- (2) $8 \, \sigma$, $7 \, \pi$
- (3) 1σ , 1π
- (4) 9σ , 8π
- Q.69 Number of co-ordinate bond present in sulphuric acid are:
 - (1) 1
 - (2) 2
- (3)3
- (4) 4
- Q.70 In the co-ordinate valence:
 - (1) electrons are equally shared by the atoms
 - (2) electrons of one atom are shared by two atoms
 - (3) hydrogen bond is formed
 - (4) none of the above
- **Q.71** Which of the following has no co-ordinate bond?
 - (1) PH₃
- (2) $P_2H_6^{2+}$ (3) $P_2H_5^{\oplus}$ (4) PH_4^{+}
- **Q.72** The compound containing co-ordinate bond is:
 - $(1) H_2SO_4$
- $(2) O_3$
- $(3) SO_3$
- (4) All of these

BACK BONDING

- Q.73 Which of the following is not possible due to back bonding:
 - (1) State of hybridisation may change
 - (2) Bond order increases
 - (3) Bond angle always decreases

- (4) Lewis acidic strength decreases
- Q.74 Among following molecule N-Si bond length is shortest:
 - (1) N(SiH₃)₃
 - (2) NH(SiH₃)₂
 - (3) NH₂(SiH₃)
 - (4) All have equal N-Si bond length
- **Q.75** The geometry with respect to the central atom of the following molecules are:
 - $N(SiH_3)_3$, Me_3N , $(SiH_3)_3P$
 - (1) Planar, pyramidal, planar
 - (2) planar, pyramidal, pyramidal
 - (3) pyramidal, pyramidal
 - (4) Pyramidal, planar, pyramidal
- Q.76 Back bonding is absent in:
 - $(1) (SiH_3)_3N$
- $(2)H_3Si-N=C=O$
- $(3) O(SiH_3)_2$
- (4) P(SiH₃)₃

IONIC BOND

- Q.77 The compound which contains both ionic and covalent bonds is:
 - (1) AI_4C_3 (2) HCl
- (3) NH₄Cl (4) KCl
- Q.78 An atom with atomic number 20 is most likely to combine chemically with the atom whose atomic number is:
 - (1) 11
- (2) 16
- (3)18
- (4) 10
- Q.79 Least ionic bond is:
 - (1) P—Cl (2) S—Cl (3) I—CI (4) CI—CI
- Q.80 Formula of a metal oxide is MO, formula of its phosphate will be:
 - (1) $M_3(PO_4)_2$
- (2) MPO₄
- $(3) M_2(PO_4)_2$
- $(4) M_2(PO_4)_3$
- Q.81 Electrovalent compounds do not show stereoisomerism. The reason is:
 - (1) Presence of ions
 - (2) Strong electro static force of attraction
 - (3) Brittleness
 - (4) Non directional nature of ionic bond
- Q.82 Nature of bond formed when two elements react, depends on:
 - (1) Ionisation potential
 - (2) Electronegativity
 - (3) Oxidation potential
 - (4) Electron affinity
- **Q.83** This is not the characteristics of ionic compound:
 - (1) Brittle nature
 - (2) Solubility in polar solvent
 - (3) Directional bond

- (4) Conduction of electricity in fused state
- Q.84 The bond in which two atoms are bonded by coulombic attraction force is called:
 - (1) Hydrogen bond
- (2) Covalent bond
- (3) Ionic bond
- (4) Co-ordinate bond
- Q.85 Consider two elements with atomic no. 37 and 53, the bond between their atoms would be:
 - (1) Covalent
- (2) Ionic
- (3) Co-ordinate
- (4) Metallic
- Q.86 Which of the following pairs will form the most stable ionic bond?
 - (1) Na and Cl
- (2) Mg and F
- (3) Li and F
- (4) Na and F

SOLUBILITY

- **Q.87** KCl easily dissolves in water because :
 - (1) It is a salt of K
 - (2) It reacts with water
 - (3) It hydrolysed with water
 - (4) Its ions are easily solvated
- Q.88 Capacity of solvent to neutralise charge on ionic compound is called:-
 - (1) Solvation energy (2) Dielectric constant
 - (3) Dipole moment (4) Solubility
- Q.89 The force responsible for dissolution of ionic compound in water is:
 - (1) Dipole dipole forces
 - (2) Ion dipole force
 - (3) Ion ion force
 - (4) Hydrogen bond
- **Q.90** The hydration of ionic compounds involves:
 - (1) Evolution of heat
 - (2) Weakening of attractive forces
 - (3) Dissociation into ions
 - (4) All

MELTING POINT AND BOILING POINT:

- Q.91 Which of the following has the lowest melting point
 - (1) SrF₂
- (2) BeF₂
- (3) BaF₂
- (4) MgF₂
- Q.92 Which of the following substance will have highest b.p.?
 - (1) He
- (2) CsF
- (3) NH₃
- (4) CHCl₃
- **Q.93** As compared to covalent compounds electrovalent compounds generally possess
 - (1) High m.p. and high b.p.
 - (2) Low m.p. and low b.p.

- (3) Low m.p. and high b.p.
- (4) high m.p. and low b.p.
- **Q.94** Which of the following halides has the highest melting point?
 - (1) NaCl (2) KCl
- (3) NaBr
- (4) NaF

- **Q.95** In which of the following pair of compounds? Their melting point are closest to each other:
 - (1) LiCl, NaCl
- (2) RbCl, LiCl
- (3) CsCl, NaCl
- (4) LiCl, CsCl

FAJAN'S RULE

- **Q.96** The pair of elements which on combination are most likely to form an ionic compound is:
 - (1) Na and Ca
- (2) K and O
- (3) O and Cl
- (4) Al and I
- Q.97 Out of the following the compound with maximum ionic nature are:
 - (1) Metal oxide
- (2) Metal chloride
- (3) Metal phosphide (4) Metal sulphide
- **Q.98** The most covalent halide is:
 - (1) AIF₃
- (2) $AICI_3$ (3) $AIBr_3$ (4) AII_3
- Q.99 AlCl₃ is covalent, while AlF₃ is ionic. This is justified by:
 - (1) Molecular orbital theory
 - (2) Valency bond theory
 - (3) Fajan rule
 - (4) Lattice energy
- Q.100 Which pair in the following has maximum and minimum ionic character respectively?
 - (1) LiCl, RbCl
- (2) RbCl, BeCl₂
- (3) BeCl₂, RbCl
- (4) AgCl, RbCl
- Q.101 Maximum covalent character will be shown by the compound is:
 - (1) SiCl₄
- (2) AICI₃
- (3) HgCl₂ (4) NaCl
- Q.102 CCl₄ is more covalent than LiCl because:
 - (1) There is more polarization of Cl in CCl₄
 - (2) There is more polarization of Cl in LiCl

 - (3) CCl₄ has more weight
 - (4) None of above
- Q.103 The correct order of decreasing polarisable ions is:
 - (1) Cl⁻, Br⁻, I⁻, F⁻
- (2) F⁻, I⁻, Br⁻, Cl⁻
- (3) F⁻, I⁻, Br⁻, Cl⁻
- (4) I⁻, Br⁻,Cl⁻, F⁻
- **Q.104** On the basis of concept of ionic potential (ϕ) , the tendency to form covalent bond in a group:
 - (1) increases
 - (2) decreases
 - (3) remains unchanged

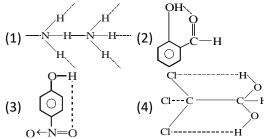
- (4) shows erratic/irregular change
- Q.105 According to Fajan's rules necessary condition to form covalent bond is:
 - (1) small cation and large anion
 - (2) small cation and small anion
 - (3) large cation and large anion
 - (4) large cation and small anion
- Q.106 Which is most ionic?
 - $(1) P_2O_5$ (2) MnO $(3) CrO_3$
- (4) Mn₂O₇
- Q.107 Which of the following order is incorrect?
 - (1) Ionic character = MCl< MCl₂< MCl₃
 - (2) Polarizability = $F^- < Cl^- < Br^- < l^-$
 - (3) Polarising power = $Na^+ < Ca^{+2} < Mg^{+2} < Al^{+3}$
 - (4) Covalent character = LiF< LiCl <LiBr<LiI
- Q.108 According to Fajan's rules, electrovalent-bond formation is favoured:
 - (1) low positive charge, and small size of cations and large size of anions
 - (2) low positive charge, and large size of cations and small size of anions
 - (3) high negative charge, and large size of cations and large size of anions
 - (4) high positive charge, and small size of cations and small size of anions

THERMAL DECOMPOSITION

- Q.109 The most stable carbonate is:
 - (1) Li₂CO₃ (2) BeCO₃ (3) CaCO₃ (4) BaCO₃
- Q.110 Which of the following does not give an oxide on
 - (1) $MgCO_3$ (2) Li_2CO_3 (3) $ZnCO_3$ (4) K_2CO_3
- Q.111 Which decomposes on heating?
 - (1) NaOH (2) KOH (3) LiOH (4) RbOH

- Q.112 Which of the following forms metal oxide on heating?
 - (1) Na₂CO₃
- (2) Li₂CO₃
- (3) K_2SO_4
- (4) NaHCO₃
- Q.113 Increasing order of stability of:
 - I. K₂CO₃ II. MgCO₃ III. Na₂CO₃
 - (1) | < | | < | | |
- (2) | | < | | | < |
- (3) II < I < III
- (4) | < | | < | |
- Q.114 Alkaline earth metal nitrates on heating decompose to give:
 - (1) $M(NO_2)$ and O_2 only
 - (2) MO, N_2 and O_2
 - (3) MO, NO_2 and O_2

- (4) MO and NO₂ only
- Q.115 Which of the following is not correct for IIA metals?
 - (1) Thermal stability of carbonate, sulphate increases on moving down the group
 - (2) Thermal stability of all type of oxides decrease on moving down the group
 - (3) Solubility of Hydroxides increases on moving down the group
 - (4) Bicarbonate do not exist in solid state.


MOLECULAR ORBITAL THEORY

- Q.116 The ion that is isoelectronic with CO and having same bond order is :-
 - (1) CN⁻
- $(2) O_2^+$
- $(3) O_2^-$
- (4) N₂⁺
- Q.117 Which of the following is paramagnetic:-
 - $(1) O_2^-$
- (2) CN⁻
- (3) CO
- (4) NO⁺
- Q.118 Which has the bond order in fraction:-
 - $(1) O_2$
- (2) HeH⁺ (3) CO
- (4) CN
- Q.119 Bond order in C2+is:-
 - $(1)^{\frac{1}{2}}$
- $(3)^{\frac{3}{2}}$
- Q.120 Which of the following molecules have unpaired electron:-
 - $(1) H_2$
- (2) H_3O^+ (3) H_2O
- (4) HeH
- Q.121 In the following which of the two are paramagnetic
 - (a) N₂
- (b) CO
- (c) B₂
- (d) NO_2
- Correct answer is :-(1) a and c
- (2) b and c
- (3) c and d
- (4) b and d
- Q.122 Increasing order of bond length in NO, NO⁺ and NO-is:-
 - (1) NO > NO -> NO+
- (2) NO⁺< NO < NO⁻
- (3) NO < NO⁺< NO[−]
- (4) $NO < NO^{+} = NO^{-}$
- Q.123 Bond order of Li2 is:-
 - (1) 0
- (2) 1
- (3) 2
- (4) 3
- Q.124 In which of the following set, the value of bond order will be 2.5:-
 - (1) O_2^+ , NO, NO⁺², CN (2) CN, NO⁺², CN⁻, F₂
 - (3) O_2^+ , NO^{+2} , O_2^{+2} , CN^- (4) O_2^{-2} , O_2^- , O_2^+ O_2
- Q.125 When two atomic orbitals combines, it forms:-
 - (1) One molecular orbital
 - (2) Two molecular orbital
 - (3) Two bonding molecular orbitals

- (4) Two anti bonding molecular orbitals
- Q.126 The paramagnetic property of oxygen is well explained by:-
 - (1) Molecular orbital theory
 - (2) Resonance theory
 - (3) Valence bond theory
 - (4) VSEPR theory
- **Q.127** Which of the following has fractional bond order?
 - $(1) O_2^{2+}$
- $(2) O_2^{2-}$
- (3) F_2^{2-}
- $(4) H_2^-$
- Q.128 The diamagnetic molecule is
 - (1) Super oxide ion
 - (2) Oxygen molecule
 - (3) Carbon molecule
 - (4) Unipositive ion of nitrogen molecule
- **Q.129** The energy of σ 2s orbital is greater, than σ1s* orbital because
 - (1) σ 2s orbital is bigger than σ 1s* orbital
 - (2) σ 2s orbital is a bonding orbital where as σ 1s* is an antibonding orbital
 - (3) σ 2s orbital has a greater value of n than σ 1s* orbital
 - (4) None

HYDROGEN BOND

- Q.130 The hydrogen bond is strongest in:-
 - (1) O H - S
- (2) S H - O
- (3) F H - F
- (4) O H - O
- Q.131 H₂O boils at higher temperature than H₂S, because it is capable of forming:-
 - (1) Ionic bonds
- (2) Covalent bonds
- (3) Hydrogen bonds (4) Metallic bonds
- Q.132 Intermolecular hydrogen bonds are not present in:
 - (1) CH₃CH₂OH
- (2) CH₃COOH
- (3) $C_2H_5NH_2$
- (4) CH₃OCH₃
- Q.133 In which of the following molecule, the shown hydrogen bond is not possible:-

Q.134 Correct order of volatility is:-

- (1) HF > HCI > HBr > HI
- (2) HCl > HBr > HI> HF
- (3) HI > HBr > HCl > HF
- (4) HBr < HCl < HI< HF
- Q.135 Glycerol is more viscous than glycol the reason is :-
 - (1) Higher molecular wt.
 - (2) More covalent
 - (3) More extent of hydrogen bonding
 - (4) Complex structure
- Q.136 The correct order of volatility is:-
 - (1) NH₃< H₂O
 - (2) p- nitro phenol < o- nitro phenol
 - (3) $CH_3OH > CH_3 O- CH_3$
 - (4) HF > HCl
- Q.137 Maximum number of H-bonding is shown by

(4) HF

- (1) H_2O (2) H_2Se (3) H_2S
- Q.138 Intramolecular H-bond:
 - (1) Decreases Volatility
 - (2) Increases melting point
 - (3) Increases viscosity
 - (4) Increases vapour pressure
- Q.139 The crystal lattice of ice is mostly formed by:-
 - (1) Ionic forces
 - (2) Covalent bonds
 - (3) Inter molecular H-bonds
 - (4) Covalent as well as H-bonds
- Q.140 Acetic acid exists as dimer in benzene due to:-
 - (1) Condensation reaction
 - (2) Hydrogen bonding
 - (3) Presence of carboxyl group
 - (4) None of the above
- **Q.141** Which of the following does not form a hydrogen bond with water
 - $(1) (CH_3)_2CO$
- (2) CH₃CN
- (3) CH₃OH
- $(4) C_2H_6$
- **Q.142** Hydrogen bonding is formed in compounds containing hydrogen and :
 - (1) Highly electro-negative atoms
 - (2) Highly electro-positive atoms
 - (3) Metal atoms with d-orbitals occupied
 - (4) Metalloids

- Q.143 Strongest hydrogen bond is shown by:
 - (1) Water
 - (2) Ammonia
 - (3) Hydrogen fluoride
 - (4) Hydrogen sulphide

VANDER WAALS FORCES

- **Q.144** In a molecule of water following bonds are present-
 - (1) Two hydrogen bond
 - (2) Two ionic bond
 - (3) One covalent and one ionic bond
 - (4) Two covalent bond
- **Q.145** In dry ice the bond present between two molecules is
 - (1) Ionic bond
- (2) Covalent bond
- (3) Hydrogen bond
- (4) Vander Waal
- Q.146 Which is the weakest among the following types of bonds?
 - (1) Debye force
 - (2) Metallic bond
 - (3) Dipole-dipole bond
 - (4) Hydrogen bond
- **Q.147** Covalent molecules are usually held in a crystal structure by :
 - (1) Dipole-dipole attraction
 - (2) Electrostatic attraction
 - (3) Hydrogen bond
 - (4) Van-der waal's attraction
- Q.148 In solid argon the atoms are held together:
 - (1) by ionic bonds
 - (2) by hydrogen bonds
 - (3) by Vander Waals forces
 - (4) by hydrophobic bonds
- Q.149 Which substance has the strongest London dispersion forces?
 - $(1) SiH_4$ (2)
- (2) CH_4
- (3) SnH₄
- (4) GeH₄
- Q.150 Which force is least sensitive for distance?
 - (1) Ion-dipole attraction
 - (2) Dipole-induced dipole
 - (3) Ion-induced dipole
 - (4) Dispersion force

>>>>>>>

ANSWER KEY

TOPIC WISE QUESTIONS

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	2	2	4	1	2	1	4	3	1	4	3	3	3	1
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	3	3	2	2	2	2	1	2	1	4	1	3	2	4	1
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	2	2	3	3	3	3	4	2	4	3	2	3	2	3	4
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	4	3	4	1	3	2	2	2	2	1	1	4	2	2	2
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	4	2	3	1	4	2	3	1	2	2	1	4	3	3	2
Que.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans.	4	3	2	4	1	4	2	3	3	2	2	4	2	2	4
Que.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
Ans.	2	2	1	4	4	2	1	4	3	2	1	1	4	2	1
Que.	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans.	2	1	2	4	4	3	2	2	3	4	1	1	4	3	3
Que.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135
Ans.	2	2	2	1	1	1	4	3	3	3	3	4	3	3	3
Que.	136	137	138	139	140	141	142	143	144	145	14 <mark>6</mark>	147	148	149	150
Ans.	1	1	4	4	2	4	1	3	4	4	1	3	3	3	1

