KHAN GLOBAL STUDIES

K.G.S. campus, Near Sai Mandir, Mussalahpur Hatt, Patna – 6 Mob.: 8877918018, 8757354880

Defence (Mathematics)

By: Prashant Sir

Quadratic Equation short Note

Polynomials

An expression of the form $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ $n \in \text{ whole No}$ is called a polynomial of degree n where $a_n \neq 0$, a_0 , a_1 , a_2 ... $a_n \in R$

Quadratic equation $ax^2 + bx + c = 0$, $a \ne 0$

Roots of an equation

Values of the variable for which an equation is satisfied are called the roots of the equation

Identity

If f(x) = 0 is a satisfied by every value of x in the domain of f(x) then it is called an identity.

Ex
$$(a + b)^2 = a^2 + b^2 + 2ab$$

 $ax^2 + bx + c = 0$, $a \ne 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{\frac{2a}{2a}}$$
$$x = \frac{-b \pm \sqrt{D}}{\frac{2a}{2a}}$$

$$D = b^2 - 4ac$$

D →Discriminant

Nature of roots

- (1) $D > 0 \rightarrow$ roots are real and distinct
- (2) D = 0, real and Equal
- (3) $D < 0 \Rightarrow$ Imaginary roots
- (4) If $a, b, c \in \text{Real No}$, If one root is p + iq then other root must be p iq
- (5) If $a, b, c \in \text{rational No}$, if one root is $p + \sqrt{q}$ then other root must be $p \sqrt{q}$

Note

1. If α and β are roots of $ax^2 + bx + c = 0$ then $ax^2 + bx + c = a(x - \alpha)(x - \beta)$

- 2. If α , β are the roots of $ax^2 + bx + c = 0$ then $\alpha + \beta = \frac{-b}{a}$, $\alpha\beta = \frac{c}{a}$
- 3. Equation whose roots are α and β is given by $x^2 [\alpha + \beta]x + \alpha\beta = 0$
- 4. For real roots $D \ge 0$
- 5. If $a, b, c \in Q$ and D is a perfect square then roots are rational.
- 6. If a = 1 and $b, c \in I$ and roots are rational numbers then roots must be integers.
- 7. If a + b + c = 0 and one root of $ax^2 + bx + c = 0$ is 1 and other root $\frac{c}{a}$
- 8. $a^2 + b^2 + c^2 ab bc ca = \frac{1}{2}[(a b)^2 + (b c)^2 + (c a)^2]$
- 9. $ax^2 + bx + c = 0$, $a \neq 0$, $\alpha, \beta \xrightarrow{roots} ax^2 + bx + c = 0$. $a \neq 0$, $|\alpha \beta| = \text{difference of } roots = <math>\frac{\sqrt{D}}{|a|}$
- 10. Let α, β, γ are the roots of cubic equation $ax^3 + bx^2 + cx + d = 0$ $\alpha + \beta + \gamma = \frac{-b}{a}$ $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$ $\alpha\beta\gamma = -\frac{d}{a}$
- 11. Let $\alpha, \beta, \gamma, \delta$ are the roots of $ax^4 + bx^3 + cx^2 + dx + e = 0$ $\alpha + \beta + \gamma + \delta = \frac{-b}{a}$ $\alpha\beta\gamma\delta = \frac{e}{a}$

$$\alpha\beta\gamma + \beta\gamma\delta + \gamma\delta\alpha + \delta\alpha\beta = \frac{-d}{a}$$
$$\alpha\beta + \beta\gamma + \gamma\delta + \delta\alpha + \alpha\gamma + \beta\delta = \frac{c}{a}$$

- 12. If the degree of a polynomial equation is odd then numbers of real roots will also be odd. If follows that atleast one of the roots will be real.
- 13. If α, β, γ are the roots of $ax^3 + bx^2 + cx + d = 0$ then $ax^3 + bx^2 + cx + d = a(x \alpha)(x \beta)(x \gamma)$
- 14. If $\alpha, \beta, \gamma, \delta$ one the roots of $ax^4 + bx^3 + cx^2 + dx + e = 0$

 $ax^4 + bx^3 + cx^2 + dx + e = a(x - ax^4)$ α) $(x - \beta)(x - \gamma)(x - \delta)$

- 15. If one root is k times the other root, QE $ax^2 + bx + c = 0$ Condition $\frac{(k+1)^2}{k} = \frac{b^2}{ac}$
- 16. If ratio of roots of the equation $ax^2 + bx +$ c = 0 be p : q then $(p+q)^2ac = pqb^2$
- 17. If a > 0 and $x = \sqrt{a + \sqrt{a + \sqrt{a + \dots \infty}}}$ then $x = \frac{1+\sqrt{4a+1}}{2}$
- Remainder theorem: If f(x) is divided by x - k then remainder is f(k)
- 19. If D_1 is Discriminant of $ax^2 + bx + c = 0$ and D_2 is Discriminant of $a_1x^2 + b_1x +$ $c_1 = 0$
 - (a) If $D_1 + D_2 \ge 0 \Rightarrow$ at least one of D_1 and $D_2 \geq 0$
 - ⇒ atleast one of the equation has real roots.
 - (b) If $D_1 + D_2 < 0$ then at least one of the equation has imaginary roots

Transformation of Quadratic Equations Let α , β be the roots of equation $ax^2 + bx +$ c = 0, $a \neq 0$, then the equation whose roots are

(1)
$$\frac{1}{\alpha}$$
, $\frac{1}{\beta}$

Let
$$x = \frac{1}{\alpha} \Rightarrow \alpha = \frac{1}{x}$$

Replace x by $\frac{1}{x}$ we get

$$a + bx + cx^2 = 0$$

(2) $\alpha + k$, $\beta + k$

Replace x by x - k

(3)
$$\alpha - k$$
, $\beta - k$

Replace x by x + k

(4) roots are αk , βk

Replace x by $\frac{x}{k}$

(5)
$$\frac{\alpha}{k}$$
, $\frac{\beta}{k}$

Replace x by xk

Range of Quadratic Expression $Y = ax^2 + bx + c$

If
$$a > 0$$
 Range , $\left[\frac{-D}{4a}, \infty\right)$

min value =
$$\frac{-D}{4a}$$

If Range,
$$\left(-\infty, \frac{-D}{4a}\right]$$

max value = $\frac{-D}{4a}$

Range in restricted Domain $y = ax^2 + bx + c$ if $x \in [x_1, x_2]$

- (i) If $\frac{-b}{2a} \notin [x_1, x_2]$ then
 - = $[\min\{f(x_1), f(x_2)\}, \max\{f(x_1), f(x_2)\}]$
- (ii) If $\frac{-b}{2a} \in [x_1, x_2]$ then [min $\{f(x_1), f(x_2), f(\frac{-b}{2a})\}$, max $\{f(x_1), f(x_2), f(\frac{-b}{2a})\}$ $f(x_2), f\left(\frac{-b}{2a}\right)$

Note

- If D < 0, then if $a > 0 \Rightarrow ax^2 + bx + c > 0 \ \forall x$ if $a < 0 \Rightarrow ax^2 + bx + c < 0 \forall x$
- If $f(x) \ge 0 \ \forall \ x \in R$ then a > 0 and $D \le 0$
- If $f(x) \le 0 \ \forall \ x \in R$ then a < 0 and $D \le 0$ Condition for common roots $a_1 x^2 + b_1 x + c_1 = 0 \rightarrow QE(1)$ $a_2x^2 + b_2x + c_2 = 0 \rightarrow QE(2)$

Making coefficient of x^2 same and then subtracting the two equations we get common root.

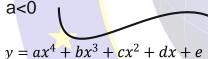
If both roots are common then

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

- $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ If D is -ve of any one of the QE then both roots are common.
- If $p + \sqrt{q}$ is one of the common root then both roots are common.



- An equation of the form $(x-)a(x-b)(x-c)(x-d) = Ax^2$ Where ab = cd Divided by x^2 in both sides then put $y = x + \frac{ab}{x}$
- An equation of th form $(x-a)^4 + (x-b)^4 = A$ Put $y = \frac{x-a+x-b}{2}$ then solve
- |f(x) + g(x)| = |f(x)| + |g(x)|Passible if $f(x)g(x) \ge 0$
- $y = ax^3 + bx^2 + cx + d$ a < 0



• $y = ax^{1} + bx^{3} +$

If a<0

Note

- 1. If both roots are +ve
 - (a) $D \ge 0$
- (b) Sum > 0
- (c) p > 0
- 2. If both roots are -ve
 - (a) $D \ge 0$
- (b) Sum < 0
- (c) p > 0
- 3. Roots are of opposite signs
 - (a) D > 0
- (b) p < 0

- 4. Quadratic equation $ax^2+bx+c=0$ roots are reciprocal to each other than a=c
- 5. Roots are equal in magnitude but opposite in sign
 - (a) D > 0
- (b) S = 0
- (c) p < 0
- 6. Attleast one root of equation is positive then either one root is positive or both roots are positive
- 7. If atleast one roots of equation is negative then either one root is negative or both roots are negative.

Location of roots

- 1. If k lies between the roots of f(x)=0 then
 - (a) D > 0
- (b) af(k) < 0
- 2. If both roots are less than k
 - (a) $D \ge 0$
- (b) af(k) > 0
- (c) $\frac{-b}{2a} < k$
- 3. If both the roots are greater than k
 - (a) $D \ge 0$
- (b) af(k) > 0
- (c) $k < \frac{-b}{2a}$
- 4. If exactly one root lies in the interval (k_1, k_2)
 - (a) D > 0
- (b) $f(k_1)f(k_2) < 0$
- 5. Both the roots lying in the interval (k_1, k_2)
 - (a) $D \ge 0$
 - (b) $af(k_1) > 0$ and $af(k_2) > 0$
 - (c) $k_1 < \frac{-b}{2a} < k_2$
- 6. If one root is less than k_1 and other root is more than k_2
 - $\Rightarrow k_1$ and k_2 lies b/w the roots $af(k_1) < 0$ and $af(k_2) < 0$
- 7. If k_1 and k_2 lies b/w the roots
 - (a) D > 0
- (b) $af(k_1) < 0$
- (c) $af(k_2) < 0$