Chapter

Quadratic Equation

RANKER'S STUFF

SINGLE CORRECT QUESTIONS

- **Q.1** If roots of the equation $x^{2} (1 + m^{2}) + 2 mcx + c^{2} - a^{2} = 0$ are equal, then value of c is-
 - (1) a $\sqrt{(1+m^2)}$ (2) a $\sqrt{(1-m^2)}$

 - (3) m $\sqrt{(1+a^2)}$ (4) m $\sqrt{(1-a^2)}$
- **Q.2** If the roots of the equation $\frac{x-a}{ax-1} = \frac{x-b}{bx+1}$ are reciprocal to each other, then -
 - (1) a = 1 (2) b = 2 (3) a = 2b (4) b = 0
- The equation $x \frac{2}{x-1} = 1 \frac{2}{x-1}$ has -
 - (1) no root
- (2) one root
- (3) two equal root
- (4) infinitely many roots
- **Q.4** If x 2 is a common factor of $x^2 + ax + b$ and $x^2 + cx + d$, then -
 - (1) d b = 2 (c a)
 - (2) b d = (c a)

 - (3) 4 + 2c + b = 0 (4) b d = 2(c a)
- **Q.5** The roots of $a_1x^2 + b_1x + c_1 = 0$ are reciprocal of the roots of the equation

$$a_2x^2 + b_2x + c_2 = 0$$
, if-

- (1) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ (2) $\frac{b_1}{b_2} = \frac{c_1}{a_2} = \frac{a_1}{c_2}$
- (3) $\frac{a_1}{a_2} = \frac{b_1}{c_2} = \frac{c_1}{b_2}$
- (4) $a_1 = \frac{1}{a_2}$, $b_1 = \frac{1}{b_2}$, $c_1 = \frac{1}{c_2}$
- **Q.6** If x is the real, then the value of the expression $\frac{2x^2+4x+1}{x^2+4x+2}$ is -
 - (1) positive and negative number

- (2) only positive number
- (3) only negative number
- (4) only 1
- Q.7 The number of real roots of the equation

$$|x^2 + 4x + 3| + 2x + 5 = 0$$
 is-

- (1) 2 (2) 3
- (3)4
- (4) 1
- Q.8 If product of roots of the equation $x^2 - 4mx + 3e^{2 \log_e m} - 4 = 0$ is 8, then its roots are real, when m equals-
 - (1) 1
- (2) 2
- (3) 2 or –2
- (4) 2
- Q.9 For what value of c, the roots of quadratic equation $(c-2)x^2 + 2(c-2)x + 2 = 0$ are not real -
 - (1)]1,2[
- (2)]2,3[
- (3)]3,4[
- (4)]2,4[
- **Q.10** For $x^3 + 1 \ge x^2 + x$ -
 - (1) $x \le 0$
- (2) $x \ge 0$
- (3) $x \ge -1$ (4) $-1 \le x \le 1$
- **Q.11** If roots of the equation $ax^2 + bx + c = 0$ are $\frac{\alpha}{\alpha 1}$

and
$$\frac{\alpha+1}{\alpha}$$
, then $(a+b+c)^2$ equals-

- (1) $2b^2 ac$ (2) $b^2 ac$ (3) $b^2 4ac$ (4) $4b^2 2ac$
- **Q.12** If roots of the equation $2x^2 (a^2 + 8a + 1)x + a^2$ - 4a = 0 are in opposite sign, then -
 - (1) 0 < a < 4
- (2) a > 0
- (3) a < 8
- (4) 4 < a < 0
- **Q.13** If $\frac{x^2 + 2x + 7}{2x + 3} < 6$, $x \in \mathbb{R}$, then -
 - (1) x > 11 or x < $\frac{-3}{2}$ (2) x > 11 or x < -1

(3)
$$\frac{-3}{2}$$
 < x < -1

(3)
$$\frac{-3}{2}$$
 < x < -1 (4) -1 < x < 11 or x < $\frac{-3}{2}$

- **Q.14** If roots of the equation $x^2 bx + c = 0$ are two successive integers, then $b^2 - 4c$ equals -
 - $(1)\ 1$
- (2) 2
- (3)3
- (4)4
- **Q.15** The numbers of real roots of $3^{2x^2-7x+7} = 9$ is-
 - (1)0
- (2)2
- (3)1
- (4)4

- **Q.16** If $a(p + q)^2 + 2apq + c = 0$ and $a(p + r)^2 + 2apr + c = 0$, then greguals -
 - (1) $p^2 + c/a$
- (2) $p^2 + a/c$
- (3) $p^2 + a/b$ (4) $p^2 + b/a$
- **Q.17** If in the equation $ax^2 + bx + c = 0$, the sum of roots is equal to sum of squares of their reciprocals, then $\frac{b^2}{ac} + \frac{bc}{a^2}$ equals -
 - (1) 1
- (2)-1
- (4) 2
- Q.18 If real value of x and y satisfies the equation $x^2 + 4y^2 - 8x + 12 = 0$, then -
 - (1) 0 < y < 1
- (2) 2 < y < 6
- $(3) 1 \le y \le 1$
- (4) 2 < y < 6
- Q.19 If roots of $x^2 (a-3)x + a = 0$ are such that both of them is greater than 2, then-
 - $(1) a \in [7, 9]$
- (2) a \in [9, 10)
- $(3) a \in [9, 7]$
- (4) a ∈ [9, 12]
- Q.20 The real roots of the equation

$$x^2 + 5 |x| + 4 = 0$$
 are-

- (1) -1, -4
- (2) 1, 4
- (3) 4, 4
- (4) None of these
- Q.21 The product of all the solutions of the equation $(x-2)^2-3|x-2|+2=0$ is
 - (1)0
- (2) 2
- (3) -4
- (4) None

NUMERICAL VALUE TYPE QUESTIONS

- Q.22 The sum of all the real roots of the equation $|x-2|^2 + |x-2| - 2 = 0$ is.....
- **Q.23** If roots of $x^2 10cx 11d = 0$ are a, b and the roots of x^2 –10ax –11b = 0 are c, d, then the value of a + b + c + d is equal to (a, b, c, d) are different numbers)

- **Q.24** If both roots of equation $4x^2 20px + 25p^2 +$ 15p - 66 = 0 are greater than 2, then sum of all possible integral values of p is —
- Q.25 Let a is real number then minimum number of real roots of equation $(x^2 + ax + 1)(3x^2 + ax - 3)$ = 0 can be —
- **Q.26** The number of integer values of λ for which the expression : $2x^3 - 12x + \lambda = 0$ has real roots is
- Q.27 Let k be an integer and p is a prime number such that the quadratic equation $x^2 + kx + p = 0$ has two distinct positive integer solutions. Then the value of -(p + k) is.
- Q.28 Find out number of solution of equation

$$\sqrt{x+1} - \sqrt{x-1} = \sqrt{4x-1}$$

STATEMENT TYPE QUESTIONS

Each question contains Statement -I and statement-II. Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

- Statement-I is True, Statement-II is True, statement-II is a correct explanation for statement-l
- (B) Statement-I is True, statement-II is True, statement-II is NOT a correct explanation for statement-I
- Statement-I is True and statement-II is False (C)
- Statement-I is False and statement-II is True (D)
- **Q.29 Statement-I**: If a, b, c, b, p, q, $r \in R$ and $ax^2 +$ bx + c \geq 0, px² + qx + r \geq 0 for all x then apx² + $bqx + cr \ge 0$ for all real x.

Statement-II: $ax^2 + bx + c > for all x if <math>a > 0$, $b^2 - 4ac$ < 0.

- (1) A
- (2) B
- (3)C
- (4) D
- **Q.30 Statement-I**: If $x \in (2, 3)$ then $x^2 5x + 6 > 0$ **Statement-II**: If $\alpha < x < \beta$, $ax^2 + bx + c = 0$ and root have opposite sign ($\alpha < \beta$)
 - (1)A
- (2) B
- (3)C
- (4) D
- Q.31 Statement-I: The equation

$$\sqrt{x+1} - \sqrt{x-1} = \sqrt{4x-1}$$
 has no solution.

MATHEMATICS

Statement-II:

Equation $\sqrt{x+1} - \sqrt{x-1}$

= $\sqrt{4x-1}$ and equation $2\sqrt{x^2-1}$ = 1 -2x have no common solution.

- (1) A
- (2) B
- (3)C
- (4) D
- Q.32 Statement-I: The number of solution of equation $x = \sqrt{6 + \sqrt{6 + \sqrt{6 + \dots \infty}}}$ is 1

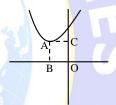
Statement-II: For imaginary roots of a quadratic equation, D < 0

- (1) A
- (2) B
- (3) C
- (4) D
- **Q.33** Statement-I : Let α, β are the roots of equation $f(x) = 3x^2 - 4x + 1 = 0$ then equation whose root's are $2\alpha, 2\beta$ is $3x^2 - 8x + 2 = 0$

Statement-II: To obtain, from the equation f(x) = 0 having root's α and β the equation having root's 2α and 2β it is sufficient to change x by x/2 in f(x) = 0

- (1) A
- (2)B
- (3) C

MORE THAN ONE CORRECT TYPE QUESTIONS


- **Q.34** If the equation $cx^2 + bx 2a = 0$ has no real roots and a $< \frac{b+c}{2}$, then -
 - (1) ac < 0

- (3) $\frac{c-b}{2} > a$ (4) $\frac{c+2b}{8} > a$
- Q.35 Which of the following is correct for the quadratic equation $x^2 + 2(a-1)x + a + 5 = 0$
 - (1) The equation has positive roots, if $a \in (-5, -1)$
 - (2) The equation has roots of opposite sign, if $a \in (-\infty, -5)$
 - (3) The equation has negative roots, if $a \in [4, \infty)$
 - (4) None of these
- **Q.36** If equations $(a + 2)x^2 + bx + c = 0$ and $2x^2 + 3x + 4 = 0$ have a common root where a, b, $c \in N$ then-
 - $(1) b^2 4ac < 0$
 - (2) minimum value of a + b + c is 16
 - (3) $b^2 < 4ac + 8c$
 - (4) minimum value of a + b + c is 7

- **Q.37** The equation $|x + 1| |x 1| = a^2 2a 3$ can have real solutions for x if a belongs to:
 - $(1) (-\infty, -1] \cup [3, +\infty)$
 - (2) $[1-\sqrt{5}, 1+\sqrt{5}]$
 - (3) $[1 \sqrt{5}, -1] \cup [3, 1 + \sqrt{5}]$
 - (4) None of these
- **Q.38** The quadratic equation $x^2 2x \lambda = 0$, $\lambda \neq 0$,
 - (1) cannot have a real root if $\lambda < -1$
 - (2) can have a rational root if λ is a perfect square
 - (3) cannot have an integral root if $n^2 1 < \lambda < n^2$ + 2n where n = 0, 1, 2, 3,...
 - (4) None of these

COMPREHENSION TYPE QUESTIONS

Q.39 Graph of $f(x) = ax^2 + bx + c$ is shown adjacently for which ℓ (AB) = 2, ℓ (AC) = 3 and $b^2 - 4ac = -4$

- (i) The value of a + b + c is equal to
 - (1)7
- (2)8
- (3)9
- (4) 10
- The quadratic equation with rational coefficients (ii) whose one of the root is b + $\sqrt{a+c}$ is

(1)
$$x^2 - 6x + 2 = 0$$
 (2) $x^2 - 6x - 1 = 0$

(2)
$$x^2 - 6x - 1 = 0$$

$$(3) x^2 + 6x + 2 = 0$$

(3)
$$x^2 + 6x + 2 = 0$$
 (4) $x^2 + 6x - 1 = 0$

Range of g (x) = $(a + 1/2) x^2 + (b + 2) x -$ (iii) (c-1/2) when $x \in [-4, 0]$ is

(1)
$$[-10, -6]$$
 (2) $\left[\frac{-49}{4}, -10\right]$

$$(3) \begin{bmatrix} -49 \\ 4 \end{bmatrix}, -6$$

$$(4 \begin{bmatrix} -49 \\ 4 \end{bmatrix}, \infty)$$

$$\left(4\left[\frac{-49}{4},\infty\right)\right)$$

- **Q.40** $f(x) = x^2 + 2(k+1)x + 9k 5$
- The values of k such that f(x) has real zeroes : (i)
 - (1) $k \le 0$
- (2) $k \ge 0$
- (3) $k \ge 6$
- (4) $k \le 6$
- The values of k such that f(x) has zeroes of (ii) opposite signs:

- (1) $k < \frac{5}{9}$
- (2) $k > \frac{5}{9}$
- (3) k > 1
- (4) None of these
- (iii) If f(x) = (x k)(x 10) + 1 then number of integral values of k for which f(x) has zeroes at integral points -
 - (1) 1
- (2) 2
- (3) 3
- (4) 4

MATCH THE COLUMN TYPE QUESTIONS

Q.41 If α , β are the roots of the equation $x^2 - 4x + 1 = 0$, then

Column-I	Column-II
(A) $\alpha^2 + \beta^2$	(P) 52
(B) $\alpha^3 + \beta^3$	(Q) 4
(C) $ \alpha - \beta $	(R) 14
(D) $\frac{1}{\alpha} + \frac{1}{\beta}$	(S) $2\sqrt{3}$

Q.42 Match the following:

5	Column – I	Column-II			
(A)	If $x^2 + x - a = 0$ has integral roots and $a \in N$, then a can be equal to	(P)	2		
(B)	If the equation $ax^2 + 2bx + 4c = 16$ has no real roots and $a + c > b + 4$ then integral value of c can be equal to	(Q)	6		
(C)	If the equation $x^2 + 2bx + 9b - 14 = 0$ has only negative roots then integral values of b can be	(R)	12		
		(S)	20		

ANSWER KEY

RANKER'S STUFF

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	1	4	1	4	2	1	1	2	4	3	3	1	4	1	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	1	3	3	2	4	1	4	1210	7	2	57	1	0	4	4
Que.	31	32	33	34	35	36	37	38	39(i)	39(ii)	39(iii)	40(i)	40(ii)	40(iii)	
Ans.	1	2	1	1,2,3,4	1,2,3	2,3	1,3	1,3	4	1	3	3	3	2	

Q.41 $[A \rightarrow R, B \rightarrow P, C \rightarrow S, D \rightarrow Q]$

Q.42 $[A \rightarrow P, Q, R, S; B \rightarrow Q, R, S; C \rightarrow P, R, S]$

