Chapter

Trigonometric Equation

JEE-FLASHBACK

JEE MAINS QUESTION

- The number of values of α in $[0,2\pi]$ for which $2\sin^3\alpha - 7\sin^2\alpha + 7\sin\alpha = 2\operatorname{is}$: [JEE(Main) 2014]
 - (1)6
- (2)4
- (3)3
- (4)1
- **Q.2** The number of $x \in [0,2\pi]$ for which

$$\left| \sqrt{2\sin^4 x + 18\cos^2 x} - \sqrt{2\cos^4 x + 18\sin^2 x} \right| = 1 \text{ is}$$

[JEE(Main) 2016]

- (1) 2
- (2) 6 (3) 4
- If $0 \le x < 2\pi$, then the number of real values of x, which satisfy the equation

cosx + cos2x + cos3x + cos4x = 0, is :-

[JEE(Main) 2016]

- (1)9
- (2)3
- (3)5
- (4)7
- Q.4 If sum of all the solutions of the equation $8\cos x \cdot \left(\cos \left(\frac{\pi}{6} + x\right)\cos \left(\frac{x}{6} - x\right) - \frac{1}{2}\right) = 1 \text{ in } [0, \pi]$

is $k\pi$, then k is equal to - [JEE (Main)-2018]

- (1) $\frac{20}{9}$ (2) $\frac{2}{3}$ (3) $\frac{13}{9}$ (4) $\frac{8}{9}$
- The number of solutions of $\sin 3x = \cos 2x$, in the interval $\left(\frac{\pi}{2},\pi\right)$ is : [JEE(Main) 2018]
 - (1) 3
- (2) 4 (3) 2

- **Q.6** If $0 \le x < \frac{\pi}{2}$, then the number of values of x for which sinx - sin2x + sin3x = 0, is:

[JEE(Main) 2013 and 2019]

- (1)3
- (2)1
- (3)4
- (4)2

Q.7 The sum of all values of $\theta \in \left(0, \frac{\pi}{2}\right)$ satisfying $\sin^2 \theta$

 $2\theta + \cos^4 2\theta = \frac{3}{4}$ is:

[JEE(Main) 2019]

- (1) π (2) $\frac{\pi}{2}$ (3) $\frac{3\pi}{8}$ (4) $\frac{5\pi}{4}$
- **Q.8** The value of $\cos \frac{\pi}{2^2} . \cos \frac{\pi}{2^3} \cos \frac{\pi}{2^{10}} . \sin \frac{\pi}{2^{10}}$

[JEE(Main) 2019]

- Let $S = \{\theta \in [-2\pi, 2\pi] : 2\cos^2\theta + 3\sin\theta = 0\}.$ Q.9

Then the sum of the elements of S is:

[JEE(Main) 2019]

- (2) $\frac{5\pi}{2}$
- $(3) 2\pi$
- **Q.10** If [x] denotes the greatest integer $\leq x$, then the system of linear equations

 $[\sin\theta] x + [-\cos\theta] y = 0$

 $[\cot\theta] x + y = 0$

[JEE(Main) 2019]

(1) Have infinitely many solutions if

 $\theta \in \left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$ and has a unique solution if

- $\theta \in \left(\pi, \frac{7\pi}{6}\right)$
- (2) Has a unique solution if

$$\theta \in \left(\frac{\pi}{2}, \frac{2\pi}{3}\right) \cup \left(\pi, \frac{7\pi}{6}\right).$$

- (3) Has a unique solution if $\theta \in \left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$ and have infinitely many solution if $\theta \in \left(\pi, \frac{7\pi}{6}\right)$
- (4) Have infinitely many solution if $\theta \in \left(\frac{\pi}{2}, \frac{2\pi}{3}\right) \cup \left(\pi, \frac{7\pi}{6}\right)$
- Q.11 Let S be the set of all $\alpha \in \mathbb{R}$ such that the equation, $\cos 2x + \alpha \sin x = 2\alpha 7$ has a solution. Then S is equal to : [JEE (Main)-2019]
 (1) R (2) [1, 4]
 - (1) R (2) [1, 4] (3) [3, 7] (4) [2, 6]
- **Q.12** The number of solutions of the equation

$$1 + \sin^4 x = \cos^2 3x, x \in \left[-\frac{5\pi}{2}, \frac{5\pi}{2} \right] \text{ is}$$
[JEE (Main)-2019]
(1) 3 (2) 5 (3) 7 (4) 4

- Q.13 The number of distinct solution of the equation, $\log_{1/2} |\sin x| = 2 \log_{1/2} |\cos x|$ in the interval, [0, 2π] is _____. [JEE (Main)-2020]
- **Q.14** If the equation $\cos^4\theta + \sin^4\theta + \lambda = 0$, has real solutions for θ , then λ lies in the interval :

[JEE (Main)-2020]

$$(1)\left(-\frac{5}{4},-1\right) \qquad (2)\left[-1,\frac{-1}{2}\right]$$

$$(3)\left(-\frac{1}{2},-\frac{1}{4}\right) \qquad (4)\left[-\frac{3}{2},-\frac{5}{4}\right]$$

Q.15 If $0 < \theta, \phi < \frac{\pi}{2}, x = \sum_{n=0}^{\infty} \cos^{2n} \theta, y = \sum_{n=0}^{\infty} \sin^{2n} \phi$ and

$$z = \sum_{n=0}^{\infty} cos^{2n} \theta \cdot sin^{2n} \phi$$
 then : [JEE (Main)-2021]

- (1) xyz = 4 (2) xy z = (x + y)z
- (3) xy + yz + zx = z (4) xy + z = (x + y)z
- **Q.16** All possible values of $\theta \in [0, 2\pi]$ for which $\sin 2\theta + \tan 2\theta > 0$ lie in : [JEE (Main)-2021]

$$(1) \left(0, \frac{\pi}{2}\right) \cup \left(\pi, \frac{3\pi}{2}\right)$$

$$(2) \left(0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{4}\right) \cup \left(\pi, \frac{7\pi}{6}\right)$$

$$(3) \left(0, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{4}\right) \cup \left(\frac{3\pi}{2}, \frac{11\pi}{6}\right)$$

$$(4) \left(0, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{4}\right) \cup \left(\pi, \frac{5\pi}{4}\right) \cup \left(\frac{3\pi}{2}, \frac{7\pi}{4}\right)$$

Q.17 If $\sqrt{3}(\cos^2 x) = (\sqrt{3} - 1) \cos x + 1$, the number of solutions of the given equation when $x \in \left[0, \frac{\pi}{2}\right]$ are [JEE (Main)-2021]

Q.18 The number of integral values of 'k' for which the equation $3\sin x + 4\cos x = k + 1$ has a solution, $k \in R$ is _____. [JEE (Main)-2021]

Q.19 The number of solutions of the equation $|\cot x| = \cot x + \frac{1}{\sin x}$ in the interval $[0,2\pi]$ is ___.

[JEE (Main)-2021]

Q.20 If $15 \sin^4 \alpha + 10\cos^4 \alpha = 6$, for $\alpha \in R$, then the value of $27 \sec^6 \alpha + 8 \csc^6 \alpha$ is equal to :

[JEE (Main)-2021]

- (1) 350 (2) 250 (3) 400 (4) 500
- Q.21 The number of solution of $\sin^7 x + \cos^7 x = 1$, $x \in [0, 4\pi]$ is equal to [JEE (Main)-2021] (1) 11 (2) 7 (3) 5 (4) 9
- **Q.22** The sum of all values of x in $[0, 2\pi]$, for which $\sin x + \sin 2x + \sin 3x + \sin 4x = 0$ is equal to :

[JEE (Main)-2021]

- (1) 8π (2) 11π (3) 12π (4) 9π
- **Q.23** The sum of solutions of the equation

$$\frac{\cos x}{1+\sin x} = \left|\tan 2x\right|, x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) - \left\{\frac{\pi}{4}, -\frac{\pi}{4}\right\} \text{ is :}$$

[JEE (Main)-2021]

(1)
$$-\frac{11\pi}{30}$$
 (2) $\frac{\pi}{10}$ (3) $-\frac{7\pi}{30}$ (4) $-\frac{\pi}{15}$

MATHEMATICS

Q.24 Let S be the sum of all solutions (in radians) of the equation $\sin^4\theta + \cos^4\theta - \sin\theta \cos\theta = 0$ in [0, 4π]. Then $\frac{8S}{\pi}$ is equal to ____.

[JEE (Main)-2021]

- Q.25 If n is the number of solutions of the equation $2\cos x \left(4\sin\left(\frac{\pi}{4}+x\right)\sin\left(\frac{\pi}{4}-x\right)-1\right)=1, x \in [0,\pi]$ and S is the sum of all these solutions, then the ordered pair (n, S) is: [JEE (Main)-2021]
 - $(2)\left(2,\frac{2\pi}{2}\right)$ $(3)\left(2,\frac{8\pi}{9}\right)$ $(4)\left(3,\frac{5\pi}{3}\right)$
- **Q.26** The number of solutions of $|\cos x| = \sin x$ such that $-4\pi \le x \le 4\pi$ is-[JEE (Main)-2022] (1)4(2)6(3)8(4)12
- **Q.27** $2\sin^2\theta \cos 2\theta = 0$, $2\cos^2\theta + 3\sin\theta = 0$. If sum of all solutions of θ in $[0, 2\pi]$ is $k\pi$, then find [JEE (Main)-2022]
- **Q.28** Let $S = \left\{ \theta \in [0, 2\pi] : 8^{2\sin^2 \theta} + 8^{2\cos^2 \theta} = 16 \right\}$. Then n (S) + $\sum_{n=0}^{\infty} \left(\sec \left(\frac{\pi}{4} + 2\theta \right) \cos \sec \left(\frac{\pi}{4} + 2\theta \right) \right)$

is equal to: [JEE MAIN 2022] (1) 0(2) -2(3) -4(4) 12

Q.29 Let $S = \left| -\pi, \frac{\pi}{2} \right| - \left| -\frac{\pi}{2}, -\frac{\pi}{4}, -\frac{3\pi}{4}, \frac{\pi}{4} \right|$. Then the number of elements in the set $A = \left\{ \theta \in S : \tan \theta \left(1 + \sqrt{5} \tan \left(2\theta \right) \right) = \sqrt{5} - \tan \left(2\theta \right) \right\}$ [JEE MAIN 2022]

Q.30 Let $S = \left\{\theta \in \left(0,2\pi\right): 7\cos^2\theta - 3\sin^2\theta - 2\cos^22\theta = 2\right\}.$ Then, the sum of roots of all the equations x^2-2 $(\tan^2\theta + \cot^2\theta)x + 6\sin^2\theta = 0, \theta \in S$, is-

- [JEE MAIN 2022] Q.31 The number of elements in the set
 - $S = \left\{ x \in \mathbb{R} : 2\cos\left(\frac{x^2 + x}{6}\right) = 4^x + 4^{-x} \right\}$ [JEE MAIN 2022]
- (4) infinite (1) 1(2) 3(3) 0
- Q.32 The number of elements in the set

 $S = \{\theta \in [0,2\pi]: 3\cos^4\theta - 5\cos^2\theta - 2\sin^6\theta + 2 = 0\}$ [JEE (Main)-2023] (1) 10(2)8(3) 12(4)9

JEE ADVANCED QUESTION

- **Q.1** The number of integral values of k for which the equation 7 $\cos x + 5 \sin x = 2k + 1$ has a solution is-[IIT-2002] (1)4(2)8(3) 10(4) 12
 - For which interval for θ , the inequation

 $(2 \sin^2 \theta - 5 \sin \theta + 2) > 0$. When $0 < \theta < 2\pi$ [IIT-2006]

- $(1)\left(\frac{13\pi}{48},2\pi\right)$ $(2)\left(0,\frac{\pi}{8}\right)\cup\left(\frac{\pi}{6},\frac{5\pi}{6}\right)$ (3) $\left(\frac{\pi}{8}, \frac{5\pi}{6}\right)$ (4) $\left(0, \frac{\pi}{6}\right) \cup \left(\frac{5\pi}{6}, 2\pi\right)$
- Q.3 The number of solutions of the pair of equations $2\sin^2\theta - \cos 2\theta = 0$, $2\cos^2\theta - 3\sin\theta = 0$ in the interval $[0, 2\pi]$ is-[IIT-2007]
 - (1) zero
- (2) one
- (3) two

Q.2

- (4) four
- **Q.4** For $0 < \theta < \frac{\pi}{2}$, the solution(s) of

$$\sum_{m=1}^{6} \csc \left(\theta + \frac{(m-1) \pi}{4}\right) \csc \left(\theta + \frac{m\pi}{4}\right) =$$

 $4\sqrt{2}$ is(are)

[IIT-JEE - 2009]

- (1) $\frac{\pi}{4}$ (2) $\frac{\pi}{6}$ (3) $\frac{\pi}{12}$ (4) $\frac{5\pi}{12}$
- The number of values of θ in the interval **Q.5** $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that $\theta \neq \frac{n\pi}{5}$ for n = 0, ±1, ±2 and $tan\theta = \cot 5\theta$ as well as $\sin 2\theta = \cos 4\theta$ is

[IIT-JEE-2010]

Let θ , $\phi \in [0, 2\pi]$ be such that $2\cos\theta(1-\sin\phi) =$ Q.6 $\sin^2\theta \left(\tan\frac{\theta}{2} + \cot\frac{\theta}{2}\right)\cos\phi - 1, \tan(2\pi - \theta) > 0$ and $-1 < \sin\theta < -\frac{\sqrt{3}}{2}$. Then ϕ cannot satisfy

[IIT-JEE 2012]

(1) $0 < \phi < \frac{\pi}{2}$ (2) $\frac{\pi}{2} < \phi < \frac{4\pi}{2}$

(3)
$$\frac{4\pi}{3} < \phi < \frac{3\pi}{2}$$
 (4) $\frac{3\pi}{2} < \phi < 2\pi$

(4)
$$\frac{3\pi}{2} < \phi < 2\pi$$

- Q.7 For $x \in (0, \pi)$, the equation $\sin x + 2 \sin 2x - \sin 2x$ 3x = 3 has[JEE (Advanced) 2014]
 - (1) infinitely many solutions
 - (2) three solutions
 - (3) one solution
 - (4) no solution
- **Q.8** The number of distinct solutions of the equation $\frac{5}{4}\cos^2 2x + \cos^4 x + \sin^4 x + \cos^6 x + \sin^6 x = 2$ in the interval $[0, 2\pi]$ is **[JEE (Advanced) 2015]**
- Q.9 Let $S = \left\{ X \in (-\pi, \pi) : X \neq 0, \pm \frac{\pi}{2} \right\}$. The sum of all distinct solutions of the equation $\sqrt{3}$ sec x + cosec x + 2(tan x - cot x) = 0 in the set S is equal to [JEE (Advanced) 2016]
 - $(1) \frac{7\pi}{9}$ $(2) \frac{2\pi}{9}$ (3) 0 $(4) \frac{5\pi}{9}$
- Q.10 Let a, b, c be three non-zero real numbers such that the equation $\sqrt{3}$ a cos x + 2b sinx = c, x \in $\left| -\frac{\pi}{2}, \frac{\pi}{2} \right|$, has two distinct real roots α and β with $\alpha + \beta = \frac{\pi}{3}$. Then, the value of $\frac{b}{a}$ is _____. [JEE(Advanced) 2018]
- Answer Q.11 and Q.12 by appropriately matching the lists based on the information given in the paragraph.

Let f x = $\sin \pi \cos x$ and g x = $\cos 2\pi \sin x$ be two functions defined for x > 0. Define the following sets whose elements are written in the increasing order:

 $X = \{x : f(x) = 0\}, Y = \{x : f'(x) = 0\}, Z = \{x : g(x) = 0\}$ $W = \{x : g'(x) = 0\}$

List-I contains sets X, Y, Z and W. List-II contains some information regarding these sets.

	List-l		List-II
(1)	X	(P)	

(II)	Υ	(Q)	an arithmetic
			progression
(111)	Z	(R)	NOT an arithmetic
			progression
(IV)	W	(S)	$\supseteq \left\{ \frac{\pi}{6}, \frac{7\pi}{6}, \frac{13\pi}{6} \right\}$
		(T)	$\supseteq \left\{ \frac{\pi}{3}, \frac{2\pi}{3}, \pi \right\}$
		(U)	$\supseteq \left\{ \frac{\pi}{6}, \frac{3\pi}{4} \right\}$

- Q.11 Which of the following is the only correct combination? [JEE(Advanced) 2019]
 - (1) IV-(Q), (T)
 - (2) III-(R), (U)
 - (3) III-(P), (Q), (U)
 - (4) IV-(P), (R), (S)
- Q.12 Which of the following is the only correct combination? [JEE(Advanced) 2019]
 - (1) I-(Q), (U)
 - (2) I-(P), (R)
 - (3) II-(Q), (T)
 - (4) II-(R), (S)
- Q.13 Consider the following lists

	List-I	List-II				
(I)	$\begin{cases} x \in \left[-\frac{2\pi}{3}, \frac{2\pi}{3} \right] : \\ \cos x + \sin x = 1 \end{cases}$	(P)	has two elements			
(11	$\begin{cases} x \in \left[-\frac{5\pi}{18}, \frac{5\pi}{18} \right] : \\ \sqrt{3} \tan 3x = 1 \end{cases}$	(Q)	has three elements			
(1	$\begin{cases} x \in \left[-\frac{6\pi}{5}, \frac{6\pi}{5} \right] : \\ 2\cos 2x = \sqrt{3} \end{cases}$	(R)	has four elements			
(1)	$\begin{cases} x \in \left[-\frac{7\pi}{4}, \frac{7\pi}{4} \right] : \\ \sin x - \cos x = 1 \end{cases}$	(S)	has five elements			
		(T)	has six elements			

The correct option is: [JEE(Advanced) 2022]

- (1) $(I) \rightarrow (P)$; $(II) \rightarrow (S)$; $(III) \rightarrow (P)$; $(IV) \rightarrow (S)$
- (2) $(I) \rightarrow (P)$; $(II) \rightarrow (P)$; $(III) \rightarrow (T)$; $(IV) \rightarrow (R)$
- (3) (I) \rightarrow (Q); (II) \rightarrow (P); (III) \rightarrow (T); (IV) \rightarrow (S)
- (4) $(I) \rightarrow (Q)$; $(II) \rightarrow (S)$; $(III) \rightarrow (P)$; $(IV) \rightarrow (R)$

ANSWER KEY

JEE-FLASHBACK **JEE MAINS QUESTIONS**

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	4	4	3	4	4	2	3	3	1	4	2	8	2	4
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	4	1	11	1	2	3	4	1	56	1	3	3	3	5	16
Que.	31	32													
Ans.	1	4													

JEE ADVANCED QUESTIONS

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13
Ans.	2	4	3	3,4	3	1,3,4	4	8	3	0.5	4	3	2

