
Chapter

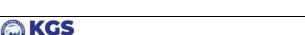
Sets and Relations

Practice Section-01

Q.1 Which of the following statements is true for sets -(1) a collection of well defined objects (2) a collection of objects (3) a collection of well defined objects which are distinct and distinguishable (4) All of the above Q.2 The set $\{x : x \in \mathbb{N}, x \text{ is prime and } 3 < x < 5\}$ is-(4) Non - Void $(1) \{4\}$ $(2) \{3, 5\}$ (3) Void Q.3 $A = \{a, e, i, o, u\}$ and $B = \{i, o\}$ then the true statement is-(4) A is equivalent B (1) $A \subset B$ (2) B ⊂ A (3) A = BQ.4 A set is defined as $A = \{x : x \text{ is irrational and } 0.1 < x < 0.101\} \text{ then } :$ (1) A is null set (2) A is finite set (3) A is infinite set (4) none If $A = \{\phi, \{\phi\}\}\$, then the power set of A is -Q.5 (2) $\{\phi, \{\phi\}, A\}$ (3) $\{\phi, \{\phi\}, \{\{\phi\}\}, A\}$ (4) none of these (1) A Q.6 If A = $\{x \mid x^2 = 4\}$ and B = $\{x \mid x^2 - 5x + 6 = 0\}$ then A \cup B $(1) \{2, 3\}$ $(2) \{-2, 3\}$ $(3) \{2, -3\}$ $(4)\{-2,2,3\}$ Q.7 Given the sets $A = \{1, 2, 3\}$, $B = \{3, 4\}$, $C = \{4, 5, 6\}$, then $A \cup (B \cap C)$ is -(2) {1, 2, 3, 4} $(3) \{1, 2, 4, 5\}$ (4) {1, 2, 3, 4, 5, 6} $(1) \{3\}$ If $N_a = \{a \ n : n \in N\}$, then $N_6 \cap N_8 =$ Q.8 $(3) N_{24}$ $(1) N_6$ $(2) N_{R}$ $(4) N_{44}$ Which of the following is the empty set? Q.9 (1) $\{x : x \in R \text{ and } x^2 + x + 1 = 0\}$ (2) $\{x : x \in R \text{ and } x^2 - x + 1 = 0\}$ (3) $\{x : x \in R \text{ and } x^2 + 2x + 1 \le 0\}$ (4) $\{x : x \in R \text{ and } x^2 - 2x + 1 \ge 0\}$ Two finite sets have m and n elements respectively. The total number of subsets of first set is 56 more Q.10 than the total number of subsets of the second set. The values of m and n respectively are -(1)7,6(2) 6, 3(3) 5, 1(4) 8, 7

Among 1000 families of a city, 40% read newspaper A, 20% read newspaper B, 10% read newspaper C, 5% Q.11 read both A and B, 3% read both B and C, 4% read A and C and 2% read all three newspapers. The number of families which read only newspaper A is-(1) 140(2)290(4)340(3)330

If for three disjoint sets A, B, C; n(A) = 10, n(B) = 6 and n(C) = 5, then $n(A \cup B \cup C)$ is equal to-Q.12 (1) 21(2) 11(3)1(4)9



Practice Section-02

Q.1	In the set A = {1, 2, 3, 4 (1) Reflexive	4, 5}, a relation R is defin (2) Symmetric	tied by R = $\{(x, y) \mid x, y \in A\}$ (3) Transitive	A and x < y}. Then R is - (4) None of these								
Q.2	$x^2 = xy$ is a relation when (1) Symmetric	hich is (2) Reflexive	(3) Transitive	(4) All of these								
Q.3	Let <i>R</i> be a relation on a (1) Reflexive	a set A such that $R = R^{-1}$ (2) Symmetric	, then <i>R</i> is (3) Transitive	(4) None of these								
Q.4	Let <i>R</i> be a relation on <i>R</i> (1) {2, 4, 8}	N defined by $x+2y=8$. (2) {2, 4, 6, 8}		(4) {1, 2, 3, 4}								
Q.5	Let A = {2, 3, 4, 5} and R is (1) Reflexive and t (3) An equivalence rela	ransitive	4), (5, 5), (2, 3), (3, 2), (3, 5), (5, 3)} be a relation on A. The (2) Reflexive and symmetric (4) None of these									
Q.6	Let L be the set of all straight lines in the xy-plane. Two lines ℓ_1 and ℓ_2 are said to be related by R if ℓ_1 is parallel to ℓ_2 . Then the relation R is -											
Q.7		(2) Symmetric {(2, 3), (3, 4)} on the set at R is reflexive and sym (2) 5		(4) Equivalence minimum number of ordered pair (4) 6								
Q.8	Let a relation 'R' is def (1) Reflexive	ine on 'Z' set of integers (2) Symmetric	such that a R b ⇒ a is di (3) Transitive	vis <mark>i</mark> ble by b then 'R' is- (4) Equivalence relation								

ANSWER KEY

PRACTICE SECTION-01

Que.	1	2	3	4	5	6	7	8	9	10	11	12
Ans:	3	3	2	3	3	4	2	3	1,2	2	3	1

PRACTICE SECTION-02

Que.	1	2	3	4	5	6	7	8
Ans:	3	4	2	3	2	4	2	3

