Chapter

Some Basic Concepts of Chemistry

NEET RANKER'S STUFF

- Q.1 How much coulomb charge is present on 1 q ion of N^{-3}
 - (1) 5.2×10^6 Coulomb
 - (2) 2.894×10^5 Coulomb
 - (3) 6.6×10^6 Coulomb
 - (4) 8.2×10^6 Coulomb
- Q.2 A gas is found to have the formula (CO)_x. It's VD is 70 the value of x must be:
 - (1)7
- (2) 4 (3) 5
- (4)6
- Q.3 Butane C₄H₁₀, burns with the oxygen in air to give carbon dioxide and water.

What is the amount (in moles) of carbon dioxide produced from 0.15 mol C₄H₁₀?

$$C_4H_{10}(g) + O_2(g) \longrightarrow CO_2(g) + H_2O(g)$$

(not balanced)

- (1) 0.15 mol CO₂
- (2) 0.30 mol CO₂
- (3) 0.45 mol CO₂
- (4) 0.60 mol CO₂
- Q.4 When 100% pure sample of CaCO₃ was heated strongly 6.72 L of CO₂ was produced at STP. Find

the weight of residual CaO left?

- (1) 30 g
- (2) 0.56 g
- (3) 16.8 g
- (4) None of these
- When sodium bicarbonate is heated 3.6×10^{24} Q.5 molecules of water are obtained. Find the moles of sodium bicarbonate heated.

$$NaHCO_3 \longrightarrow Na_2CO_3 + CO_2 + H_2O$$

- (1)6
- (2)12
- (3)9
- (4) 8

- Q.6 0.5 mole of H₂SO₄ is mixed with 0.2 mole of Ca(OH)₂. The maximum number of moles of CaSO₄ formed is:
 - (1) 0.2
- (2) 0.5
- (3) 0.4
- (4) 1.5
- Zinc and hydrochloric acid react according to Q.7 the reaction.

 $Zn(s) + 2HCl(aq.) \longrightarrow ZnCl_2(aq.) + H_2(g)$ If 0.30 mole of Zn are added to hydrochloric acid containing 0.52 mole HCl, how many moles of H₂ are produced?

- (1) 0.26 (2) 1.04
- (3) 0.52
- (4) 0.13
- A mixture of 1.0 mole of Al and 3.0 mole of Cl₂ Q.8 are allowed to react as:

2AI (s) +
$$3CI_2(g) \longrightarrow 2AICI_3(s)$$

- (a) Which is limiting reagent?
- (b) How many moles of AlCl₃ are formed
- (c) Moles of excess reagent left unreacted is
- (1) (a) Al, (b) 1.0 (c) 1.5
- (2) (a) Cl₂, (b) 2.0 (c) 2.0
- (3) (a) Al, (b) 0.5 (c) 1.5
- (4) (a) Cl₂, (b) 1.0 (c) 1.5
- How many moles of electron weigh one Q.9 kilogram:

 - (1) 6.023×10^{23} (2) $\frac{1}{9.108} \times 10^{31}$

 - (3) $\frac{6.023}{9.108} \times 10^{54}$ (4) $\frac{1}{9.108 \times 6.023} \times 10^{8}$

- **Q.10** If LPG cylinder contains mixture of butane and isobutane, then the amount of oxygen that would be required for combustion of 1 kg of it will be:
 - (1) 1.8 kg
- (2) 2.7 kg
- (3) 4.5 kg
- (4) 3.58 kg
- Q.11 The ratio of masses of oxygen and nitrogen in a particular gaseous mixture is 1:4. The ratio of number of their molecule is:
 - (1) 1 : 4
- (2)7:32
- (3)1:8
- (4)3:16
- **Q.12** A + 2B + 3C \implies AB₂C₃

Reaction of 6.0 g of A, 6.0×10^{23} atoms of B, and 0.036 mol of C yields 4.8 g of compound AB₂C₃. If the atomic mass of A and C are 60 and 80 amu, respectively, the atomic mass of B is (Avogadro no. = 6×10^{23}): A + 2B + 3C \Longrightarrow AB₂C₃

- (1) 50 amu
- (2) 60 amu
- (3) 70 amu
- (4) 40 amu
- Q.13 Rearrange the following (I to IV) in the order of increasing masses and choose the correct answer.

(Atomic masses : N = 14, O = 16, Cu = 63)

- 1 molecule of oxygen
- II 1 atom of Nitrogen
- III $1 \times 10^{-10} \times (gm \text{ molecular weight of oxygen})$
- IV $1 \times 10^{-10} \times (gm atomic weight of copper)$
- (1) || < | < || < |V
- (2) IV < III < II < I
- (3) | | < | | | < | < | V |
- (4) | | | < | < | < | < | |
- Q.14 Percentage composition of an organic compound is as follows:

C = 10.06, H = 0.84, CI = 89.10

Which of the following corresponds to its molecular formula if the vapour density is 60.0

- (1) CH₂ Cl₂
- (2) CHCl₃
- (3) CH₃Cl
- (4) None

- Q.15 The oxide of an element possess the molecular formula M2O3. If the equivalent mass of the metal is 9, the molecular mass of the oxide will be –
 - (1)27
- (2)75
- (3) 102
- (4) 18
- Q.16 4.0 g of caustic soda (mol mass 40) contains same number of sodium ions as are present in-
 - (1) 10.6 g of Na₂CO₃ (mol. mass 106)
 - (2) 58.5 g of NaCl (Formula mass 58.5)
 - (3) 7.1 g of Na₂SO₄ (Formula mass 142)
 - (4) 1 mol of NaNO₃ (mol. mass 85)
- Q.17 A gaseous mixture contains CO₂(g) and N₂O(g) in 2:5 ratio by mass. The ratio of the number of molecules of $CO_2(g)$ and $N_2O(g)$ is:
 - (1) 5 : 2
- (2)2:5
- (3) 1 : 2
- (4)5:4
- Q.18 Density of ozone relative to methane under the same temperature & pressure conditions is :
 - (1)1
- (2)3
- (3) 1.5
- (4) 2.5
- Q.19 Weight of oxygen in Fe₂O₃ and FeO is in the simple ratio for the same amount of iron is:
 - (1) 3 : 2

- (2) 1:2 (3) 2:1 (4) 3:1
- Q.20 The pair of species having same percentage (mass) of carbon is:
 - (1) CH₃COOH and C₆H₁₂O₆
 - (2) CH₃COOH and C₂H₅OH
 - (3) HCOOCH₃ and C₁₂H₂₂O₁₁
 - $(4) C_6 H_{12} O_6$ and $C_{12} H_{22} O_{11}$
- Q.21 Calculate the molecular formula of compound which contains 20% Ca and 80% Br (by wt.) if molecular weight of compound is 200. (Atomic wt. Ca = 40, Br = 80)
 - (1) Ca_{1/2}Br
- (2) CaBr₂
- (3) CaBr
- (4) Ca₂Br

CHEMISTRY

Q.22 The minimum quantity in gram of H_2S needed to precipitate 63.5 g of Cu^{+2} will be nearly

 $Cu^{+2} + H_2S \longrightarrow CuS + 2H^+$

(1) 63.5 g

(2) 31.75 g

(3) 34 g

(4) 20 g

Q.23 Phosphine (PH_3) decomposes to produce vapours of phosphorus and H_2 gas. What will be the change in volume when 100 mL of phosphine is decomposed?

 $4PH_3(g) \longrightarrow P_4(g) + 6H_2(g)$

(1) + 50 mL

(2) 500 mL

 $(3) + 75 \, \text{mL}$

 $(4) - 500 \, \text{mL}$

Q.24 Calculate the amount of Ni needed in the Mond's process given below

 $Ni + 4CO \longrightarrow Ni(CO)_4$

If CO used in this process is obtained through a process, in which 6 g of carbon is mixed with 44 g CO₂.

(1) 14.675 g

(2) 29 g

(3) 58 g

(4) 28 g

Q.25 A + B \rightarrow A₃B₂ (unbalanced)

 $A_3B_2 + C \rightarrow A_3B_2C_2$ (unbalanced)

Above two reactions are carried out by taking 3 moles each of A and B and one mole of C. Then which option is/are correct?

- (1) 1 mole of A₃B₂C₂ is formed
- (2) 1/3 mole of A₃B₂C₂ is formed
- (3) 1/2 mole of A₃B₂ is formed
- (4) 1/2 mole of A₃B₂ is left finally
- **Q.26** Formation of polyethene from calcium carbide takes place as follows :

 $CaC_2 + H_2O \rightarrow Ca(OH)_2 + C_2H_2 \rightarrow C_2H_4; n(C_2H_4) \rightarrow (-CH_2-CH_2-)n.$

The amount of polyethylene possibly obtainable from 64.0 kg CaC_2 can be

(1) 28 kg

(2) 14 kg

(3) 21 kg

(4) 42 kg

Q.27 21.6 g of silver coin is dissolved in HNO₃. When NaCl is added to this solution, all silver is precipitated as AgCl. The weight of AgCl is found to be 14.35 g then % of silver in coin is:

(1) 50%

(2) 75%

(3) 100%

(4) 15%

Q.28 The molality of a sulphuric acid solution is 0.2 M
Calculate the total weight of the solution having
1000 g of solvent.

(1) 1000 g

(2) 1098.6 g

(3) 980.4 g

(4) 1019.6 g

Q.29 What is the molarity of H_2SO_4 solution that has a density of 1.84 g/cc and contains 98% by mass of H_2SO_4 ? (Given atomic mass of S = 32)

(1) 4.18 M

(2) 8.14 M

(3) 18.4 M

(4) 18 M

Q.30 125 mL of 8% w/w NaOH solution (specific gravity 1) is added to 125 mL of 10% w/v HCl solution.

The nature of resultant solution would be

(1) Acidic

(2) Basic

(3) Neutral

(4) None

Q.31 An organic compound having molecular mass 60 is found to contain C = 20%, H = 6.67% and N = 46.67% while rest is oxygen. On heating it gives NH₃ along with a solid residue. The solid residue give violet colour with alkaline copper sulphate solution. The compound is -

(1) (NH₂)₂CO

(2) CH₃CH₂CONH₂

(3) CH₃NCO

(4) CH₃CONH₂

Q.32 The density of a solution prepared by dissolving 120 g of urea (mol. mass = 60 u) in 1000 g of water is 1.15 g/mL. The molarity of this solution is:

SOME BASIC CONCEPT OF CHEMISTRY

- (1) 2.05 M
- (2) 0.50 M
- (3) 1.78 M
- (4) 1.02 M
- **Q.33** A gaseous hydrocarbon gives upon combustion 0.72 g of water and 3.08 g of CO₂. The empirical formula of the hydrocarbon is
 - (1) C_2H_4
- (2) C_3H_4
- $(3) C_6 H_5$
- $(4) C_7 H_8$
- Q.34 A certain alkaloid has 70.8% carbon, 6.2% hydrogen, 4.1% nitrogen and the rest oxygen. What is its empirical formula?
 - (1) C₂₀H₂₁NO₄
- $(2) C_{20}H_{20}NO_4$
- $(3) C_{21}H_{20}NO_3$
- (4) C₂₀H₁₉NO₃
- Q.35 CaCO₃ is 90% pure. Volume of CO₂ collected at STP when 10 gms of CaCO₃ is decomposed is -
 - (1) 2.016 litres
- (2) 1.008 litres
- (3) 10.08 litres
- (4) 20.16 litres
- Q.36 50 gm CaCO₃ will react with gms of 20% HCl by weight.
 - (1) 36.5 gm
- (2) 73 gm
- (3) 109.5 gm
- (4) 182.5 gm
- Q.37 0.01 mole of iodoform (CHI₃) reacts with Ag to produce a gas whose volume at NTP is

$$2CHI_3 + 6Ag \rightarrow C_2H_2 + 6Ag I(s)$$

- (1) 224 ml
- (2) 112 ml
- (3) 336 ml
- (4) None of these
- Q.38 If m₁ gram of a metal A displaces m₂ gram of another metal B from its salt solution and if the equivalent weights are E₁ and E₂ respectively then the equivalent weight of A can be expressed by

 - (1) $E_1 = \frac{m_1}{m_2} \times E_2$ (2) $E_1 = \frac{m_2 \times E_2}{m_1}$

 - (3) $E_1 = \frac{m_1 \times m_2}{E_2}$ (4) $E_1 = \sqrt{\frac{m_1}{m_2} \times E_2}$
- Q.39 Chlorine is prepared in the laboratory by treating manganese dioxide (MnO₂) with

aqueous hydrochloric acid according to the reaction

$$4HCl_{(aq)} + MnO_{2(S)} + 2H_2O_{(\it{l})} + MnCl_{2(aq)} + Cl_{2(g)}$$

How many grams of HCl will react with 5.0 g of manganese dioxide?

- (1) 6.4 g HCl
- (2) 4.8 g HCl
- (3) 8.4 g HCl
- (4) 7.2 g HCl
- Q.40 A normal solution
 - (1) Contains one gram equivalent mass of the substance in one litre solution
 - (2) Contains one gram molecular mass of the substance in one litre solution
 - (3) Contains one gram equivalent mass of the substance in 100 mL of the solution
 - (4) Is that whose concentration is known.
- Q.41 Match the following List I and List II.

Column-I

- (A) 10 g CaCO₃ $\xrightarrow{\Delta}$ decomposition
- (B) $1.06 \text{ g Na}_2 \text{CO}_3$
- (C) 2.4 g C $\xrightarrow{\text{Excess O}_2}$ Combustion
- (D) 0.56 g CO $\frac{\text{Excess O}_2}{\text{Combustion}}$

Column- II

- $(1) 0.224 L CO_2$
- (2) 4.48 L CO₂
- $(3) 0.448 L CO_2$
- (4) 2.24 L CO₂
- (5) 22.4 L CO₂

CODES:

- ABCD
- (1) 4 1 2 3
- (2) 53
- (3) 4 1 3 2
- 4 2 3 (4) 1
- Q.42 Match the reactions given in column I with neutralization reactions given in column II

Column-I

(A) 0.1 mol $Na_2CO_3 + 0.2$ mol $NaHCO_3 + 0.3$ mol NaCl

CHEMISTRY

- (B) 200 mL of 0.1 M HCl + 100 of 0.1 M H_2SO_4 + 200 ML of 0.1 M $H_2C_2O_4$
- (C) 1 g NaOH and 2.25 g of oxalic acid
- (D) 0.01 mol H_3PO_4 and 0.0025 mol of $Ca(OH)_2$

Column- II

- (p) 320 mL of 0.25 N KOH solution
- (q) 400 mL of 0.5 M H₂SO₄
- (r) 125 mL of N/5 $Mg(OH)_2$
- (s) 125 mL of N/5 H_2SO_4

CODES:

A B C D

A B C D

- (1) r s q p
- (2) s r p c
- (3) p q s r
- (4) q p r

ASSERTION & REASON TYPE QUESTIONS

Directions: In the following questions, a statement of assertion is followed by a corresponding statements of reason of the following statements, choose the correct one.

- (A) Both (A) and (R) are correct, (R) is the correct explanation of (A).
- (B) Both (A) and (R) are correct, (R) is not the correct explanation of (A).
- (C) (A) is correct, (R) is incorrect.
- (D) (A) is incorrect, (R) is correct.
- Q.43 Assertion: The empirical mass of ethene is half of its molecular mass.

Reason : The empirical formula represent the simplest whole number ratio of various atoms present in a compound.

- (1) A
- (2) B
- (3) C
- (4) D
- **Q.44 Assertion**: One atomic mass unit is defined as one twelfth of the mass of one carbon-12 atom.

Reason : Carbon-12 isotope is the most abundant isotope of carbon and has been chosen as standard.

- (1) A
- (2) B
- (3) C
- (4) D
- **Q.45 Assertion** : Significant figures for 0.200 is 3 whereas for 200 it is 1.

Reason: Zeros at the end or right of a number are significant provided they are not on the right side of the decimal point.

(1) A

- (2) B
- (3) C
- (4) D
- **Q.46 Assertion**: Combustion of 16 g of methane gives 18 g of water.

Reason: In the combustion of methane, water is one of the product.

- (1) A
- (2) B
- (3) C
- (4) D
- **Q.47 Assertion**: Equal moles of different substance contain same number of constituent particles.

Reason : Equal weights of different substance contains the same number of constituent particles.

- (1) A
- (2) B
- (3) C
- (4) D
- **Q.48 Assertion**: Volume of a gas is inversely proportional to the number of moles of gas.

Reason: The ratio by volume of gaseous reactants and products is in agreement with their mole ratio.

- (1) A
- (2) B
- (3) C
- (4) D
- **Q.49 Assertion**: Normality and molarity can be calculated from each other.

Reason: Normality is equal to the product of molarity and n.

(3) C

- (1) A
- (2) B
- (4) D
- **Q.50** Assertion: Weight of 1 molecule of $O_2 = 32u$

Reason : 1 g molecule = 6.023×10^{23} molecules.

(3) C

- (1) A
- (2) B
- (4) D
- **Q.51 Assertion :** The molality of the solution does not change with change in temperature.

Reason: The molality of the solution is expressed in units of moles per 1000 g of solvent.

- (1) A
- (2) B
- (3) C
- (4) D
- **Q.52 Assertion**: A solution which contains one-gram equivalent of solute per litre of solutions is known as molar solution

Reason : Normality = molarity $\times \frac{mol.wt.of\ solute}{eq.wt.of\ solute}$

(1) A

(2) B

(3) C

(4) D

ANSWER KEY

NEET RANKER'S STUFF

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	3	4	3	2	1	1	1	4	4	2	1	1	2	3
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	3	2	2	1	1	2	3	3	1	4	1	1	4	3	1
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	1	1	4	1	1	4	2	1	3	1	1	4	1	2	3
Que.	46	47	48	49	50	51	52								
Ans.	4	3	4	1	2	1	4								

