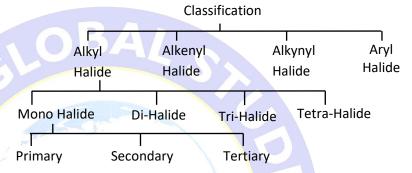
Chapter

01

Halogen Derivatives



CONTENT

- Introduction
- Mono halide-Preparation, Physical Properties, Chemical properties
- Dihalide -Preparation,
 Physical Properties,
 Chemical properties
- Trihalide-Preparation,
 Physical Properties,
 Chemical properties
- Haloarenes Preparation,
 Physical Properties,
 Chemical properties

INTRODUCTION

Halogen derivative from hydrocarbons by replacement of one or more H-atom by corresponding no. of halogen atom are known as Halogen derivative.

MONO HALIDES

General methods of preparation of monohalide (5 methods)

- (1) From alcohol
 - (i) From (SOCl₂) in presence of pyridine $R-OH \xrightarrow{SOCl_2 \\ \Delta pyridine} R-CI+SO_2+HCI$

It is known as darzen's method

(ii) From PCl₅

$$R - OH + PCI_5 \longrightarrow R - CI + HCI + POCI_3$$

(iii) From PX₃

$$3R - OH + PX_3 \xrightarrow{(X=CI,Br,I)} 3R - X + H_3PO_3$$

(iv) Lucas test

$$R-OH+HX \xrightarrow{ZnCl_2} R-X+H_2O$$
 (anhydrous $ZnCl_2 + conc.HCl$ is lucas reagents)

Rate of reaction tertiary alcohol > Secondary alcohol > Primary alcohol

(2) Halogenation of Alkane: -

Halogenation take place either at high temp. (573-773 K) or in presence of diffuse sun light or ultraviolet light Rate of reaction of alkane with halogen $F_2 > Cl_2 > Br_2 > l_2$

Eg.
$$CH_4 + CI_2 \xrightarrow{Heat/light} CH_3CI + HCI$$

 $R - H + CI_3 \xrightarrow{Heat/light} R - CI + HCI$

(3) Addition of hydrogen halides: -

Hydrogen halide react with alkene to form alkyl halide. The order of reactivity of hydrogen halide is HI > HBr > HCl

$$CH_2 = CH_2 + HBr \longrightarrow CH_3 - CH_2 - Br$$

$$CH_{3} - C = CH_{2} + HCI \longrightarrow CH_{3} - C - CI$$

$$CH_{3} - C = CH_{2} + HCI \longrightarrow CH_{3} - C - CI$$

$$CH_{3} - C = CH_{2} + HCI \longrightarrow CH_{3} - C - CI$$

$$CH_{3} - C = CH_{2} + HCI \longrightarrow CH_{3} - C - CI$$

(4) By halide exchange

(1) Finkelstein reaction

$$R - Cl \text{ or } R - Br + KI \xrightarrow{Acetone} R - I + KCl \text{ or } KBr$$

(2) Swartz reaction

$$2CH_3Cl + Hg_2F_2 \xrightarrow{\text{water}} 2CH_3 - F + Hg_2Cl_2$$

SPOT LIGHT

- Finkelstein reaction can only be used to prepare R I and swart reaction can only be used to prepare R F.
- > Darzen method is best method to prepare pure halo alkane.
- ➤ R X gives Beliestein test except R F.

(5) Borodine – Hunsdicker's reaction:

$$R-COOAg + X_2 \xrightarrow{CCl_4} R-X + CO_2 + AgX$$

Silver salt of fatty acid (Cl₂ or Br₂)

Physical Properties

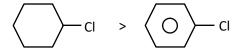
(a) Lower member of alkyl Halides are gases at room temp

Eg. CH₃F, CH₃Cl, CH₃Br, C₂H₅Cl, C₂H₅F

(b) Boiling point is higher than parent alkane Decreasing order of Boiling point. is

$$R-I>R-Br>R-CI>R-F$$

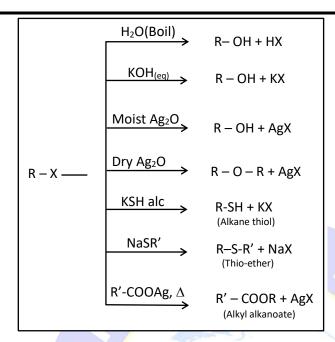
Among isomeric R - X, decreasing order of Boiling point. is primary > secondary > tertiary


(c) $R - F \& R - CI \rightarrow lighter than water$

 $R - Br \& R - I \rightarrow Heavier than water$

Decreasing order of density is R - I > R - Br > R - CI > R - F

- (d) R X are polar co-valent compound but insoluble in water they dissolve in organic solvents
- (e) Dipole moment order


$$CH_3CI > CH_3F > CH_3Br > CH_3I$$

Chemical Reactions

(1) Nucleophilic substitution Reaction (S_N)

$$Nu^{-} + -C - X^{\delta^{+}} \longrightarrow -C - Nu + X^{-}$$

Difference between S_N1 and S_N2 mechanism

S.NO.	S _N 1	S _N 2
(i)	First order reaction.	Second order reaction
(ii)	Rate = k [RX]	Rate = k[RX] [Nu]
(iii)	Racemic mixture	Inversion of configuration
(iv)	Two step reaction	One step reaction
(v)	Order: CH ₃ X < 1° < 2° < 3°	Order: CH ₃ X > 1° > 2° > 3°

** KHAN SIR **

SPOT LIGHT

$$B - X + KCN \rightarrow B - CN + KX$$

Important conversions

$$R - X + KCN \rightarrow R - CN + KX$$

$$R-CN \xrightarrow{\quad Na,C_2H_5OH \text{ or } LiAlH_4 \text{ or } Ni/H_2} \rightarrow \ R-CH_2NH_2 \xrightarrow{\quad HONO \quad} RCH_2OH$$

$$R-CN \xrightarrow{H_3O^+} R-COOH \xrightarrow{NH_3} R-CONH_3$$

$$R - COOH \xrightarrow{LiAlH_4} RCH_2OH$$

$$R - COOH \xrightarrow{PCl_5 \text{ or } PCl_3 \text{ or } SOCl_2} R - COCI$$

$$R - X + Mg \xrightarrow{Dry Ether} RMgX$$

$$RMgX + CO_2 \longrightarrow RCOOH$$

$$RMgX + HCHO \longrightarrow Primary alcohol$$

0 11

RMgX + RCR → Tertiary alcohol

Reaction with KCN & AgCN

$$R-X+AgCN \rightarrow R-N \equiv C+R-CN+AgX$$
Covalent major (minor)

$$R-X+AgCN \longrightarrow R-N \equiv C+R-CN+AgX$$
 ($:\overset{\odot}{C}\equiv N$: ion is an ambidentate nucleophile)

Reaction with KNO₂ & AgNO₂

$$R - X + KO - NO \xrightarrow{AIC} R - O - N = O + R - NO_2 + KX$$

$$R - X + Ag - O - N = O \xrightarrow{AlC} R - N = O \xrightarrow{AlC} R - N = O$$

$$Covalent$$

Reaction with sodium alkoxide (NaOR')

$$R-X+NaOR' \rightarrow R-OR'+NaX$$
(williamson synthesis Reaction)

\triangleright Reaction with NH₃

Reaction with CH ≡ CNa

$$R - X + CH \equiv CNa \xrightarrow{\Delta} R - C \equiv CH + NaX$$

If 3° halide

$$CH_{3}$$

$$CH_{3} - C - X + CH \equiv CNa \xrightarrow{\Delta} CH_{3} - C = CH_{2} + NaX + CH \equiv CH$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

Dehydrohalogenation:- Alkyl halide undergo β elimination on treatment with alc KOH or NaNH₂

$$R - CH_2 - CH_2 - X + KOH(alc) \xrightarrow{\Delta} R - CH = CH_2 + KX + H_2O$$

Substitution Vs Elimination reaction

Reaction /	Solvent	Nucleophile/base	Leaving group	Substrate
				structure
S _N 1	Very strong	Weak effect:	Strong effect:	Strong effect:
	effect :	Reaction favored	Reaction	Reaction
	Reaction	by good	favored by	favored by 3°,
	favored by	nucleophile/weak	good leaving	allylic, and
	polar solvents.	base.	group.	benzylic
				substrates.
S _N 2	Strong effect:	Strong effect:	Strong effect:	Strong effect:
	Reaction	Reaction favored	Reaction	Reaction
	favored by	by good	favored by	favored by 1°,
	polar aprotic	nucleophile/weak	good leaving	allylic, and
	solvents.	base.	group.	benzylic
	Steal	rind \		substrates.
E ₁	Very strong	Weak effect:	Strong effect:	Strong effect:
	effect:	Reaction favored	Reaction	Reaction
	Reaction	by weak base.	favored by	favored by 3°,
	favored by		good leaving	allylic, and
	polar solvents.		group.	benzylic
				substrates.
E ₂	Strong effect:	Strong effect:	Strong effect:	Strong effect:
	Reaction	Reaction favored	Reaction	Reaction
	favored by	by poor	favored by	favored by 3°
	polar aprotic	nucleophile/strong	good leaving	substrates.
	solvents.	base.	group.	

Wurt'z Reaction :- $2RX + 2Na \xrightarrow{Dry} R - R + 2NaX$

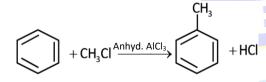
when a mix of alkyl halides, $(R_1 - X) & (R_2 - X)$ is used a mixture of alkane is formed

$$\mathbf{R_1} - \mathbf{X} + \mathbf{2Na} + \mathbf{X} - \mathbf{R_2} \xrightarrow{\quad \text{Dry ether} \quad} \mathbf{R_1} - \mathbf{R_2} + \mathbf{R_1} - \mathbf{R_1} + \mathbf{R_2} - \mathbf{R_2}$$

Organometallic Compounds

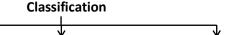
(1) Grignard reagent (RMgX)

$$R - X + Mg \xrightarrow{dry ether} R - MgX$$


(2) Frankland reagent (C₂H₅)₂Zn

$$2C_2H_5Br + 2Zn \xrightarrow{dry} (C_2H_5)_2Zn + ZnBr_2$$

(3) $4C_2H_5CI + 4Na/Pb \rightarrow (C_2H_5)_4Pb + 4NaCI + 3Pb$


Tetra ethyl lead (used as antiknocking agent)

> Friedel – craft reaction:

DIHALIDES

General formula C_nH_{2n}X₂. Two H-atom of alkanes, replaced by two halogen atom to form dihalides,

Gem dihalide

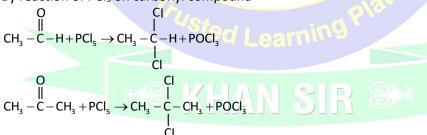
Two similar halogen attached to same c – atom are attached on

g. H₃C ∠X

Vic dihalide

Toluene

Two halogen atoms are attached on adjacent carbon atom


 α, ω dihalide Two halogen atoms separated by 3 or more

C- atom. They are attached with terminal C-atom

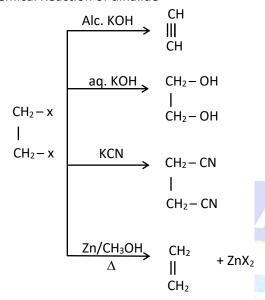
eg.
$$CH_2 - CH_2 - CH_2 - CH_2$$

Preparation of gem-dihalides

(i) By reaction of PCI₅ on carbonyl compound

⇒ Preparation vic-halide

$$\begin{array}{c} \mathsf{CH_2} - \mathsf{OH} & \mathsf{CH_2} - \mathsf{CI} \\ \mathsf{I} \\ \mathsf{CH_2} - \mathsf{OH} & + \ 2\mathsf{PCI_5} \rightarrow \begin{matrix} \mathsf{I} \\ \mathsf{CH_2} - \mathsf{CI} \end{matrix} + 2\mathsf{POCI_3} + 2\mathsf{HCI} \end{array}$$


(ii) By addition of halogen acids on alkynes

$$CH \equiv CH + HBr \rightarrow CH_2 = CHBr \xrightarrow{HBr} CH_2BrCH_2Br$$
vinyl
Reprojele

(iii) By addition of halogen to alkenes.

$$\begin{array}{ccc} \operatorname{CH_2} & \operatorname{CH_2Br} \\ \parallel & +\operatorname{Br_2} \to & \mid \\ \operatorname{CH_2} & \operatorname{CH_2Br} \end{array}$$

Chemical Reaction of dihalide

TRI-HALIDE (Halo form CHX₃)

Preparation

(i) From CH₄:
$$- CH_4 + 3CI_2 \xrightarrow{hv} CHCI_3 + 3HCI$$

(ii) By halo form reaction

$$\begin{array}{c} \text{CH}_{3}\text{CH}_{2} - \text{OH} \\ \text{or} \\ \text{CH}_{3} - \text{CO} - \text{CH}_{3} \end{array} \xrightarrow{\text{Bleaching powder} \atop [\text{CaOCl}_{2}]\text{H}_{2}\text{O}/\Delta} \rightarrow \text{CHCl}_{3} + \left(\text{H}_{3}\text{COO}\right)_{2}\text{Ca} \text{ or } \left(\text{CH}_{3}\text{COO}\right)_{2}\text{Ca} \end{array}$$

Mechanism

$$CaOCl_2 + H_2O \longrightarrow 2Cl + Ca(OH)_2$$

$$CH_3CH_2 - OH + 2CI \longrightarrow CH_3CHO + 2HCI(oxidation)$$

$$CH_3CHO + 6Cl \longrightarrow CCl_3CHO + 3HCl(Halogenation)$$

$$CH_3CHO + Ca(OH)_2 \longrightarrow CHCl_3 + (HCOO)_2 Ca(Hydrolysis)$$

If CH₃COCH₃ is used then CHCl₃ is formed into 2 step (Chlorination & Hydrolysis)

Positive haloform reaction: – Reaction which give haloform with alkali & X₂ is called as (+ve) haloform reaction.

$$CH_3 - CH - CH_3$$
 $CH_3 - CH - CH_2 - CH_3$ etc OH OH

Aldehydes only acetaldehyde $CH_3 - C - H$ O

Ketone
$$CH_3 - C - Z$$
 $(Z = CH_3, C_2H_5, COOH, CHO)$

Negative haloform reaction:- Reaction in which haloform are not formed with X_2 & alkali.

do not show haloform reaction

CHC_{l₃}

Preparation

CCl₃.CHO.2H₂O
$$\xrightarrow{\text{NaOH}}$$
 CHCl₃ + HCOONa + 2H₂O chloralhydrate (pure chloroform)

Industrial preparation

$$\begin{array}{ccc} \operatorname{CH_3CH_2} - \operatorname{OH} & \operatorname{HCOONa} \\ & \operatorname{or} & \xrightarrow{\operatorname{aq.NaCl}} \operatorname{CHCl_3} + \operatorname{Or} \\ & \operatorname{CH_3COCH_3} & \operatorname{CH_3COONa} \end{array}$$

Physical properties

- → CHCl₃ is colourless
- → CHCl₃ sweet smelling liquid
- → Boiling point is 61°C
- → Insoluble in H₂O
- → Density more than H₂O
- Used as Anaesthetic.

Chemical properties: -

(i) Oxidation: –
$$CHCl_3 + [O] \xrightarrow{Air \& Light} COCl_2 + HCl$$

Phosgene gas

Phosgene gas or carbonyl chloride (Poisonous gas)

Prevent oxidation

CHCl₃ is stored in dark colored bottle which are filled upto the brim to prevent oxidation of CHCl₃ into COCl₂ and 1 % ethanol is also added to chloroform.

$$O = C < CI + 2HO - C_2H_5 \xrightarrow{-2HCI} O = C < O Et$$

Poisonous

Di-ethyl carbonate

[Non-Poisonous]

(ii) Hydrolysis

(iii) Carbyl amine reaction or isocyanide test:-

$$R-NH_2 \xrightarrow{CHCl_3+KOH} R-NC$$

Primary amines (Aliphatic or Aromatic) $\xrightarrow{\text{CHCl}_3+\text{KOH}}$ Isocyanides \rightarrow (unpleasant or offensive smell) **Mechanism**

$$\begin{array}{c} \text{CHCl}_{3} \xrightarrow{\text{KOH}} : \text{CCl}_{2} \\ & \text{(electrophile)} \\ \hline \\ R - \ddot{N}H_{2} + : \text{CCl}_{2} \xrightarrow{R - N^{+} - C^{-}} \xrightarrow{\text{Alc.KOH}} R - N \stackrel{\clubsuit}{=} C + 2\text{HCl} \\ \hline \\ H & \text{Cl} & \text{Alkyl isocyanide} \end{array}$$

SPOT LIGHT

$$CH_{3}CH_{2}-NH_{2} \xrightarrow{CHCl_{3}+KOH} CH_{3}CH_{2}-NC$$

$$Ph-NH_{2} \xrightarrow{CHCl_{3}+KOH} Ph-NC$$

$$NH_{2} \xrightarrow{CHCl_{3}+KOH} NC$$

Reaction given by Only primary amine

(iv) Reaction with CH₃COCH₃

$$CH_3 - C - CH_3 + H - C \xrightarrow{CI} OH \xrightarrow{OH} CH_3 - C - CH_3$$

$$OH CCI_3$$

(v) Reaction with HNO₃

$$CCI_3 - H + OH - NO_2 \longrightarrow CCI_3 - NO_2 + H_2O$$
Chloropicrin

(vi) Reaction with CH₃CH = CH₂

(vii) Reimer Tiemann's Reaction:-

$$\begin{array}{c}
OH \\
\hline
(i) CHCl_3 + KOH
\end{array}$$

$$\begin{array}{c}
(ii) H^{\oplus} \\
\end{array}$$
salicylaldehyde

Mechanism

$$\begin{array}{c} \mathsf{CHCl_3} \xrightarrow{\mathsf{KOH}} : \mathsf{CCl_2} \\ & \text{(dichlorocarbene)} \end{array}$$

CCl₄ is used in place of CHCl₃

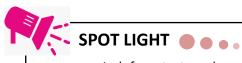
$$\begin{array}{c|c}
OH & OH \\
\hline
COOH \\
H^*, \Delta
\end{array}$$

Salicylic acid

(viii) Reaction with Ag

$$2CHCl_3 + 6Ag \longrightarrow CH = CH + 6AgCl$$

SPOT LIGHT



or
$$CH_3COCH_3$$
 $I_2 + NaOH \text{ or } NaOI$ CHI_3 CH

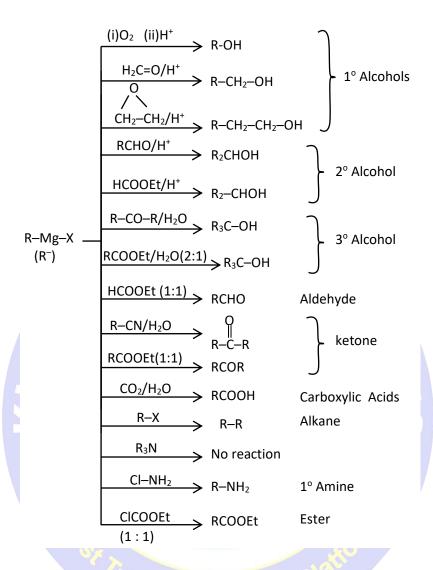
➤ CHI₃ give yellow ppt of AgI with AgNO₃ but CHCl₃ does not give AgCl ppt because CHI₃ is thermally less stable than CHCl₃.

* KHAN SIR

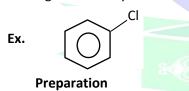
lodoform test can be used to distinguish the following pairs of compound:-

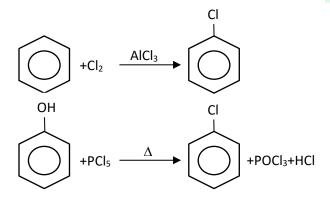
- (1) CH₃CH₂OH and CH₃OH
- (2) CH₃CHO & CH₃CH₂CHO
- (3) 2 Pentanol & Pentanol
- (4) Acetophenone & Benzophenone
- (5) 2 Propanol & 1 Propanol

Grignard Regent


$$R-X+Mg \xrightarrow{dry} R-Mg-X$$

It is used to formation of many compound like 1°, 2°, 3° Alcohols, Aldehyde, Ketone, Acids, Alkane, Alkene etc.




Reaction

HALOARENE

If halogen is directly attached to the benzene ring, compound is called as Haloarene

Chemical properties

Presence of electron withdrawing group on ring makes the nucleophilic substitution easier.

> Reactivity order :-

Towards nucleophilic substitution

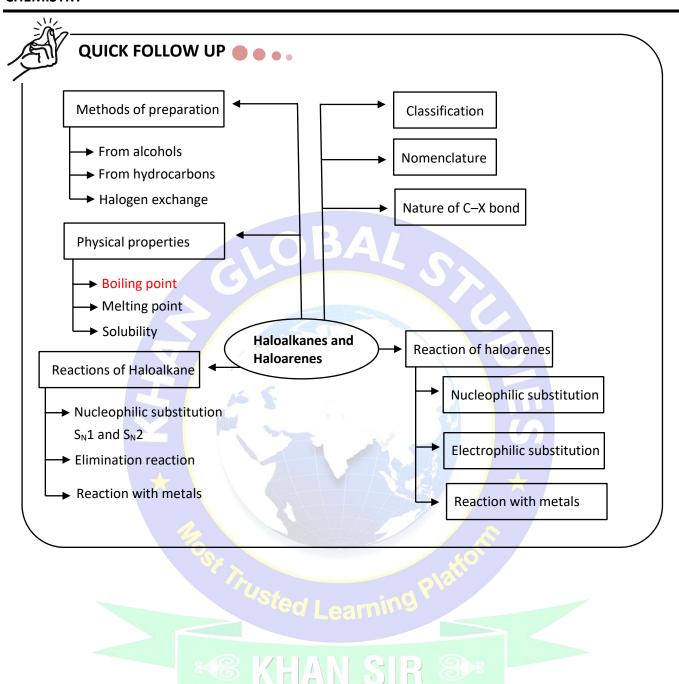
$$NO_2$$
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2

Fittig Reaction

Diphenyl

Wurtz fittig Reaction

Electrophilic substitution reaction


(i)
$$+Cl_2$$
 Anhy.FeCl₃ $+Cl_3$ $+Cl$

(ii)
$$CI$$
 +HNO₃ Conc.H₂SO₄ + NO₂ NO₂ NO₂ Major

(iii)
$$CI$$
 +Conc.H₂SO₄ Δ + CI + CI SO₃H A Major

* KHAN SIR *

