Chapter

Solution

Practice Section-01

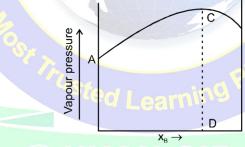
Q.1	What will be the 0.936g/cm ³ :	e molarity of a solution	containing 50g of NaCl in	500g of a solution and	having a density of
	(1) 1.5 M	(2) 1.6 M	(3) 1.8 M	(4) 1.2 M	
Q.2	mass will be:		phuric acid solution, i.e., 2		$s = 98 \text{ g mol}^{-1}$) by
	(1) 1.45	(2) 1.64	(3) 1.88	(4) 1.22	
Q.3	the resulting sol	ution?	phuric acid is diluted to 10		is the normality of
	(1) 0.5 N	(2) 1.0 N	(3) 5.0 N	(4) 10.0 N	
Q.4	obtain 0.001 M	Na ₂ CO ₃ solution. The	2.65 g of Na ₂ CO ₃ . 10 mL o value of x is (Molar m	ass of $Na_2CO_3 = 106 \text{ g/r}$	
	(1) 1000	(2) 990	(3) 9990	(4) 90	
Q.5	Find out the mas	ss of H ₂ SO ₄ in 150 mL	$\frac{N}{7}$ H ₂ SO ₄ solution	S	
	(1) 1.02 g	(2) 1.8 g	(3) 1.05 g	(4) 1.5 g	
Q.6	A solution of Ca	Cl ₂ is 0.5 mol/litre; th	en the moles of chloride ic	on in 500 mL will be:	
	(1) 0.5	(2) 0.25M	(3) 1.0	(4) 0.75	
Q.7			n water. The volume of the of the of the water. What is the mo		
	(1) 63	(2) 126	(3) 252	(4) 128	
Q.8	_	ution of <mark>6.3g of oxal</mark> ic pletely neutralize 10ml	c acid dihydrate is made u L of this solution is:	upto 250 mL. The volume	me of 0.1N NaOH
	(1) 40 mL	(2) 20 mL	(3) 10 mL	(4) 4 Ml	
			ed Learning		
		40 1/			

Practice Section-02

Q.1 Henry's law constant for oxygen dissolved in water is 4.34×10^4 atm at 25°C. If the partial pressure of oxygen

in air is 0.4 atm. Calculate the concentration (in moles per litre) of the dissolved oxygen in water in

	(1) 5.11×10^{-4}	(2) 5.11×10^{-3}	$(3) 9.2 \times 10^{-6}$	(4) 0.92×10^{-6}
Q.2				atm. The mole fraction of N_2 in air 298 K and 5 atm pressure is: (4) 6.0×10^{-6}
Q.3	Vapour pressure of pure 2 mol of liquid A and 3 mo (1) 185 mm	$B (p_B^\circ) = 150 \text{ mm Hg}$	form an ideal solution. The	e vapour pressure of solution will be: (4) 145 mm
Q.4	The vapour pressure of p mm. The composition for (1) $x_{benzene} = 0.66$; $x_{toluene}$ (3) $x_{benzene} = x_{toluene} = 0.5$	r benzene-toluene mixtur		$_{\rm e} = 0.66$
Q.5			•	has a vapour pressure of 160mm are of water at 30°C is 150 mm) (4) 4.2 mm
Q.6	-		_	A in liquid mixture is x_2 ; then apour pressure of liquid mixture is: (4) p_B°
Q.7	mixture of solution A and mm Hg)	B boils at 80°C and 1 at	tm pressure, the amount of	oure liquid B is 1000mm Hg. If a of A in the mixture is (1 atm = 760
Q.8	(1) 50 mol % Mixture of volatile comp			
	where x_A is the mole fract (1) 254, 119	(2) 119, 254	nce p_A° and p_B° are (in to (3) 135, 254	orr): (4) 154, 119
Q.9	(2) in which the molecules(3) in which the molecules	s tend to attract each other tend to repel each other as s tend to attract each other	and hence their escape in and hence their escape into the and hence their escape in	to the vapour phase is retarded. the vapour phase is retarded. to the vapour phase is speeded up. the vapour phase is speeded up.
Q.10				moles of non-volatile solute per pour pressure of 167 torr at 50°C? (4) 0.395
Q.11	•	of A and B in the mole:	fraction ratio \hat{A} : $B = 1$: 2	at a certain temperature. Suppose What would be the mole fraction (4) 0.33
Q.12		` ,	` '	nixture of Na ₂ CO ₃ and NaHCO ₃ is: (4) 237 mL
O K	KGS ETIJEE			



Practice Section-03

- Q.1 Lowering of vapour pressure due to a solute in 1 molal aqueous solution at 100°C is
 - (1) 13.44 mm Hg
 - (2) 14.12 mm Hg
 - (3) 13.2 mm Hg
 - (4) 35.2 mm Hg
- **Q.2** The vapour pressure of a dilute aqueous solution of glucose is 700 mm Hg at 370 K. Calculate the mole fraction of solute.
 - (1)4.76
- (2)47.6
- (3) 0.921
- (4) 0.0789
- **Q.3** The relative lowering of the vapour pressure of an aqueous solution containing a non-volatile solute is 0.0125. The molality of the solution is:
 - (1) 0.80
- (2) 0.50
- (3) 0.70
- (4) 0.40
- Q.4 Equal amounts of a solute are dissolved in equal amounts of two solvents A and B. The lowering of vapour pressure for solution A has twice the lowering of vapour pressure for solution B. If Mw_A and Mw_B are the molecular weights of solvents A and B, respectively, then
 - (1) $Mw_A = Mw_B$
 - (2) $Mw_A = Mw_B/2$
 - (3) $Mw_A = 4Mw_B$
 - $(4) Mw_A = 2Mw_B$
- Q.5 The diagram given below is a vapour-pressure-composition diagram for a binary solution of A and B. In the solution, A –B interactions are:

- (1) Similar to A–A and B–B interactions
- (2) Greater than A-A and B-B interactions
- (3) Smaller than A–A and B–B interactions
- (4) Unpredictable.
- **Q.6** On dissolving 0.25g of a non-volatile substance in 30 mL benzene (density 0.8g mL⁻¹), its freezing point decreases by 0.25° C. Calculate the molecular mass of non-volatile substance ($K_f = 5.1 \text{ K kg mol}^{-1}$)
 - (1) 21.333
- (2) 213.33
- (3) 170.664
- (4) 17.0664
- **Q.7** At 100°C vapour pressure of aqueous solution of glucose is 750 mm of Hg. Then find the mole fraction of the solute.
 - $(1) \frac{1}{86}$

- (2) $\frac{1}{46}$
- $(3) \frac{1}{98}$
- $(4) \frac{1}{76}$
- Q.8 10.0 g of glucose (p₁), 10.0 g of urea (p₂) and 10.0 g of sucrose (p₃) are dissolved in 250.0 mL of water at 273K (p = osmotic pressure of a solution). The relationship between the osmotic pressure of the solution is:
 - (1) $p_1 > p_2 > p_3$
- (2) $p_3 > p_1 > p_2$
- (3) $p_2>p_1>p_3$
- (4) $p_2>p_3>p_1$

Q.9	_	_	ares 1.5 and 2.5 atm 1 litrue resultant solution will	e of first solution is mixed with 2 litre be:
	(1) 1.6 atm	(2) 6.12 atm	(3) 1.26 atm	(4) 2.16 atm
Q.10	18 g glucose and 6g solution will be:	urea are dissolved in 1	litre aqueous solution a	at 27°C. The osmotic pressure of the
	(1) 3.826 atm	(2) 4.926 atm	(3) 2.92 atm	(4) 9.42 atm
Q.11	The molecular mass of	of this non-volatile solute	e is:	a 5% solution of a non-volatile solute.
	$(1) 250 \text{ g mol}^{-1}$	$(2) 300 \text{ g mol}^{-1}$	$(3) 350 \text{ g mol}^{-1}$	(4) 200 g mol^{-1}
Q.12	The temperature at w $(R = 0.082 \text{ dm}^3 \text{ atm } \text{F})$		on of glucose will exhibi	it the osmotic pressure of 16.4 atm, is:
	(1) 360° C	(2) 180 K	(3) 300 K	(4) 360 K
		Most Trusted	Learning Plat	A SES *

Practice Section-04

Q.1	0.002 molar solution of (1) 0.94 bar	NaCl having degree of di (2) 9.4 bar	association of 90% at 27° (3) 0.094 bar	PC has osmotic pressure equal to: (4) 9.4×10^{-4} bar
Q.2	A 0.2 molal solution of (1) 75 %	KCl freezes at -0.68°C. I (2) 83%	f K _f for H ₂ O is 1.86, the (3) 65%	degree of dissociation of KCl is: (4) 92 %
Q.3		tetramerises in water to the tour of the t		tion of 2.5g of A in 100 g of water mol ⁻¹ for water) (4) 62
Q.4		Cl ₂ in its aqueous solution (2) 2.6		` ,
Q.5	0.1 M aqueous solution (1) 49%	of MgCl ₂ at 300K is 4.92 (2) 29%	atm. What will be the p (3) 39%	percentage ionization of the salt? (4) 69%
Q.6	Which of the following (1) 0.01 M Na ₂ SO ₄ (3) 0.015 M urea	solutions will exhibit hig	hest boiling point? (2) 0.01 M KNO ₃ (4) 0.015 M glucose	9
Q.7				Determine the value of x. Given (4) 1
Q.8	Van't Hoff factors of action following statement(s) is (1) BP: X < Y < Z (3) Osmotic pressure: X	s (are) correct?	Y, and Z are 2.8, 1.8 are (2) FP: Z < X < Y (4) VP: Y < X < Z	nd 3.5, respectively. Which of the
		*** KHA	earning Plath	
		7.7.7.7.7.		

ANSWER KEY

PRACTICE SECTION-01

Que.	1	2	3	4	5	6	7	8
Ans.	2	4	1	2	3	1	2	1

PRACTICE SECTION-02

Que.	1	2	3	4	5	6	7	8	9	10	11	12
Ans.	1	1	2	1	2	1	1	3	1	2	2	1

PRACTICE SECTION-03

Que.	1	2	3	4	5	6	7	8	9	10	11	12
Ans.	1	4	3	4	3	2	4	3	4	2	2	4

PRACTICE SECTION-04

Que.	1	2	3	4	5	6	7	8
Ans.	3	2	4	2	1	1	1	2

Trusted Learning Platfolf

** KHAN SIR **

