Chapter

Vector

TOPIC WISE QUESTIONS

KINDS OF VECTORS

- **Q.1** If $\vec{a} = \vec{b}$, then
 - (1) both have equal magnitude and collinear
 - (2) both have equal magnitude and like vectors
 - (3) both have equal magnitude
 - (4) they have unequal magnitude but like vectors
- Q.2 Which of the following is unit vectors-

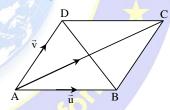
(1)
$$\hat{i} + \hat{j}$$

(2)
$$\frac{(\hat{i} + \hat{j} + \hat{k})}{\sqrt{2}}$$

(3)
$$\hat{i} + \hat{j} + \hat{k}$$

$$(4) \frac{(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})}{\sqrt{3}}$$

- Unit vector in the direction of a is represented by Q.3
 - (1) 1. a
- (2) $\frac{a}{|\vec{a}|}$ (3) $\vec{a} | \vec{a} |$ (4) $\frac{\vec{a}}{\hat{i}}$
- The zero vector has-Q.4
 - (1) no direction
 - (2) direction towards a particular point
 - (3) direction towards the origin
 - (4) indeterminate direction


ADDITION & SUBTRACTION OF VECTORS

- If ABCDE is a pentagon, then $\overrightarrow{AB} + \overrightarrow{AE} + \overrightarrow{BC} + \overrightarrow{DC}$ $+ \overrightarrow{ED} + \overrightarrow{AC}$ equals-

- (1) 3 AD (2) 3 AC (3) 3 BE (4) 3 CE
- Q.6 If a and b are two unit vectors then vector
 - (a +b)
 - (1) is a unit vector
 - (2) is not a unit vector
 - (3) can be a unit vector or not
 - (4) is a unit vector when both \vec{a} and \vec{b} are parallel
- **Q.7** If \vec{a} and \vec{b} represent vectors of two adjacent sides AB and BC of a regular hexagon ABCDEF, then AE equals-

- $(1)\vec{a} + \vec{b}$
- (2) $\vec{a} \vec{b}$
- $(3) 2\vec{b}$
- $(4) \ 2\vec{b} \vec{a}$
- Q.8 If ABCD is a quadrilateral, then the resultant of the forces represented by BA, BC, CD and DA is
 - (1) 2 BA

- (2) 2 AC (3) 2 AD (4) 2 AB
- If vector \vec{a} , \vec{b} represent two consecutive sides Q.9 of regular hexagon then the vectors representing remaining four sides in sequence are-
 - (1) $\vec{a} \vec{b}$, $\vec{a} \vec{b}$, $\vec{a} + \vec{b}$, $\vec{a} + \vec{b}$
 - (2) $\vec{a} \vec{b}$, \vec{a} , $\vec{b} \vec{a}$, \vec{b}
 - (3) $\vec{a} + \vec{b}$, $-\vec{a}$, $-\vec{b}$, $\vec{a} \vec{b}$
 - $(4) \vec{b} \vec{a}, \vec{a}, -\vec{b}, \vec{a} \vec{b}$
- **Q.10** In the adjoining diagram vector $\vec{u} \vec{v}$ is represented by the directed line segment-

- (1) BD
- (2) AC
- (3) DB
- (4) CA
- **Q.11** If $\vec{a} = 3\hat{i} 2\hat{j} + \hat{k}$ and $\vec{b} = -\hat{i} + \hat{j} + \hat{k}$, then unit vector parallel to $\vec{a} + \vec{b}$ is-
 - (1) $\frac{1}{3} (2\hat{i} \hat{j} + 2\hat{k})$ (2) $\frac{1}{5} (2\hat{i} \hat{j} + 2\hat{k})$
 - (3) $\frac{1}{\sqrt{2}} (2\hat{i} \hat{j} + 2\hat{k})$ (4) None of these

VECTORS IN TERMS OF POSITION VECTORS OF **END POINTS**

- Q.12 The position vector of a point C with respect to B is $\hat{i} + \hat{j}$ and that of B with respect to A is $\hat{i} - \hat{j}$. The position vector of C with respect to A is-
 - (1) 2 î
- (2) 2 î
 - (3) 2 j
- $(4) 2\hat{i}$

- Q.13 If the position vector of the point A and B with respect to point O are respectively $\hat{i} + 2\hat{j} - 3\hat{k}$ and $-2\hat{i}+3\hat{j}-4\hat{k}$, then \overrightarrow{BA} equals-
 - (1) $3\hat{i} \hat{j} + \hat{k}$
- (2) $3\hat{i} + \hat{j} \hat{k}$
- (3) $-3\hat{i} + \hat{j} + \hat{k}$
- (4) None of these

DISTANCE BETWEEN TWO POINTS

- Q.14 If the end points of AB are (3, -7) and (-1, -4), then magnitude of \overrightarrow{AB} is-
 - (1) 2
- (2) 3
- (3)4
- (4)5
- **Q.15** Find the distance between the points A(2,3,1), B(-1,2,3), using vector method

 - (1) $2\sqrt{14}$ (2) $2\sqrt{2}$ (3) $\sqrt{14}$ (4) $14\sqrt{2}$
- Q.16 If position vectors of the vertices of a triangle are $5\hat{i} + 6\hat{j} + 4\hat{k}$ $4\hat{i} + 5\hat{j} + 6\hat{k}$ $6\hat{i} + 4\hat{j} + 5\hat{k}$ and then this triangle is-
 - (1) right angled
- (2) equilateral
- (3) isosceles
- (4) None of these
- **Q.17** If A = (1, 0, 3), B = (3, 1, 5), then 3 kg. wt. along AB is represented by the vector-
 - (1) $2\hat{i} + 2\hat{i} + \hat{k}$
- (2) $2\hat{i} + \hat{j} + 2\hat{k}$
- (3) $\hat{i} + 2\hat{i} + 2\hat{k}$
- (4) $\hat{i} + \hat{i} + \hat{k}$
- **Q.18** If $\vec{a} = \hat{i} + \lambda \hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} + \sqrt{\lambda}\hat{k}$ are of equal magnitudes, then value of λ is-
 - (1) 1
- (2)0
- (3) 2
- (4) 0 or 1

POSITION VECTOR OF DIVIDING POINT

- Q.19 If the position vector of points A and B with respect to point P are respectively \vec{a} and \vec{b} then the position vector of middle point of AB is -
 - (1) $\frac{\vec{b}-\vec{a}}{2}$
- (3) $\frac{\vec{a}-b}{2}$
- (4) None of these
- Q.20 The position vector of the vertices of triangle ABC are \hat{i} , \hat{j} and \hat{k} then the position vector of its orthocenter is-
 - (1) $\hat{i} + \hat{i} + \hat{k}$
- (2) 2 ($\hat{i} + \hat{j} + \hat{k}$)
- (3) $\frac{1}{3}(\hat{i}+\hat{j}+\hat{k})$ (4) $\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$
- Q.21 If D, E and F are midpoints of sides BC, CA and AB of a triangle ABC, then $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF}$ is equal to-
- (1) $\overrightarrow{0}$ (2) 2 \overrightarrow{BC} (3) 2 \overrightarrow{AB} (4) 2 \overrightarrow{CA}

- **Q.22** If G is centroid of $\triangle ABC$ and $\overrightarrow{AB} = \vec{a}$, $\overrightarrow{AC} = \vec{b}$ then AG equals-
 - (1) $\frac{1}{2}$ ($\vec{a} + \vec{b}$) (2) $\frac{1}{2}$ ($\vec{a} + \vec{b}$)
 - (3) $\frac{2}{3}$ ($\vec{a} + \vec{b}$) (4) $\frac{1}{6}$ ($\vec{a} + \vec{b}$)
- **Q.23** If \vec{a} , \vec{b} , \vec{c} be position vectors of A,B,C respectively and D is the middle point of BC, then AD equals-

 - (1) $\frac{(b+c-a)}{2}$ (2) $\frac{(a+c-2a)}{2}$
 - (3) $\frac{(\vec{b} + \vec{c} 2\vec{a})}{2}$ (4) $\frac{(\vec{a} + \vec{b} 2\vec{c})}{2}$
- Q.24 The orthocenter of the triangle whose vertices are $3\hat{i} + 2\hat{j}$, $-2\hat{i} + 3\hat{j}$ and $\hat{i} + 5\hat{j}$ is-
 - (1) $\hat{i} + 5\hat{j}$
- $(2) -2\hat{i} + 3\hat{j}$
- (3) $3\hat{i} + 2\hat{i}$
- (4) None of these

COLLINEARITY OF THREE POINTS

- **Q.25** If vectors $(x 2)\hat{i} + \hat{j}$ and $(x + 1)\hat{i} + 2\hat{j}$ are collinear, then the value of x is-
 - (2)4(1)3
- (3) 5 (4) 0
- Q.26 If three collinear points A,B,C are such that AB = BC and the position vector of points A and B with respect to origin O are respectively a and b, then the position vector of point C is-
- (3) $\frac{b-a}{2}$
- (4) None of these
- **Q.27** Three points A, B, C with position vectors \vec{a} , \vec{b} , \vec{c} are collinear if $x\vec{a} + y\vec{b} + z\vec{c} = \vec{0}$ when-
 - (1) x + y + z = 0
 - (2) $x + y + z \neq 0$
 - (3) x + y + z may or may not be zero
 - (4) None of these
- Q.28 If the position vectors of the points A, B, C are $3\hat{i} - 2\hat{j} + 4\hat{k}$, $\hat{i} + \hat{j} + \hat{k} & -\hat{i} + 4\hat{j} - 2\hat{k}$, then A,B,C are-
 - (1) vertices of a right angled triangle
 - (2) vertices of an isosceles triangle
 - (3) vertices of an equilateral triangle
 - (4) collinear

RELATION BETWEEN TWO PARALLEL VECTORS

MATHEMATICS

- **Q.29** If $\hat{i} + 2\hat{j} + 3\hat{k}$ is parallel to sum of the vectors $3\hat{i} + \lambda\hat{j} + 2\hat{k}$ and $-2\hat{i} + 3\hat{j} + \hat{k}$, then λ equals-

 - $(1) 1 \qquad (2) -1$
- (3) 2
- **Q.30** If $\vec{a} = 4\hat{i} 2\hat{j} + 3\hat{k}$ and $\vec{b} = -8\hat{i} + 4\hat{j} 6\hat{k}$ are two vectors then \vec{a} , \vec{b} are-
 - (1) like parallel
- (2) unlike parallel
- (3) non-collinear
- (4) perpendicular
- Q.31 If position vectors of A, B, C, D are respectively $2\hat{i} + 3\hat{j} + 5\hat{k}$, $\hat{i} + 2\hat{j} + 3\hat{k}$, $-5\hat{i} + 4\hat{j} - 2\hat{k}$ and $\hat{i} + 10\hat{j} + 10\hat{k}$, then-
 - (1) AB || CD
 - (2) DC | AD
 - (3) A, B, C are collinear
 - (4) B, C, D are collinear

COPLANAR AND NON - COPLANAR VECTORS

- **Q.32** If $\vec{p} = 2\vec{a} 3\vec{b}$, $\vec{q} = \vec{a} 2\vec{b} + \vec{c}$, $\vec{r} = -3\vec{a} + \vec{b} + 2\vec{c}$, \vec{a} , \vec{b} , \vec{c} being non zero, non coplanar vectors then the vectors $-2\vec{a} + 3\vec{b} - \vec{c}$ is equal to -
 - (1) $\frac{-7\vec{q} + \vec{r}}{5}$ (2) $\vec{p} 4\vec{q}$
 - $(3) 2\vec{p} 3\vec{q} + \vec{r}$
- **Q.33** If \vec{a} , \vec{b} , \vec{c} , \vec{d} are four linearly independent vectors and $x \vec{a} + y \vec{b} + z \vec{c} + u \vec{d} = \vec{0}$, then-
 - (1) x + y + z + u = 0
- (2) x + y = z + u
 - (3) x + z = y + u
- (4) All correct

SCALAR OR DOT PRODUCT OF TWO VECTORS

- **Q.34** If the angle between \vec{a} and \vec{b} is θ then for $\vec{a} \cdot \vec{b} \ge 0$
 - (1) $0 \le \theta \le \pi$
- (2) $0 < \theta < \pi/2$
- (3) $\pi/2 \le \theta \le \pi$
- (4) $0 \le \theta \le \pi/2$
- **Q.35** If $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 3\hat{i} 4\hat{j} + 2\hat{k}$ & $\vec{c} = \hat{i} 2\hat{j} + 2\hat{k}$ then the projection of $\vec{a} + \vec{b}$ on \vec{c} is-
- (3) $\frac{4}{3}$
- (4) None of these
- **Q.36** If vectors $3\hat{i} + 2\hat{j} + 8\hat{k}$ and $2\hat{i} + x\hat{j} + \hat{k}$ are perpendicular then x is equal to-
 - (1)7
- (2) -7
- (3)5
- (4) 4
- **Q.37** Angle between the vectors $2\hat{i} + 6\hat{j} + 3\hat{k}$ and $12\hat{i} - 4\hat{j} + 3\hat{k}$ is -

- (1) $\cos^{-1}\left(\frac{1}{10}\right)$ (2) $\cos^{-1}\left(\frac{9}{11}\right)$
- (3) $\cos^{-1}\left(\frac{9}{91}\right)$ (4) $\cos^{-1}\left(\frac{1}{9}\right)$
- **Q.38** Two forces $\vec{P} = 2\hat{i} 5\hat{j} + 6\hat{k}$ and $\vec{Q} = -\hat{i} + 2\hat{j} \hat{k}$ are acting on a particle. These forces displace the particle from point $A(4\hat{i}-3\hat{j}-2\hat{k})$ to point B($6\hat{i} + \hat{j} - 3\hat{k}$). The work done by these forces is-
 - (1) 15 units
- (2) -15 units
- (3) 10 units
- (4) -10 units
- **Q.39** If angle between vectors \vec{a} and \vec{b} is 120° and $|\vec{a}| = 3$, $|\vec{b}| = 4$, then length of $4\vec{a} - 3\vec{b}$ is-
 - (1) $12\sqrt{3}$
- $(2) 2 \sqrt{3}$
- (3) 432
- (4) None of these
- **Q.40** If the angle between two vectors \vec{a} and \vec{b} is 120°. If $|\vec{a}| = 2$, $|\vec{b}| = 1$ then the value of $|2\vec{a} + \vec{b}|$ is-
 - $(1) \sqrt{21} \quad (2) \sqrt{13} \quad (3) 21 \quad (4) 13$

VECTOR OR CROSS PRODUCT OF TWO VECTORS

- **Q.41** If $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$, $\vec{b} = \hat{i} + 3\hat{j} + 3\hat{k}$ then $|\vec{a} \times \vec{b}|$ is
 - (1) $\sqrt{6}$ (2) $2\sqrt{6}$ (3) $\sqrt{70}$ (4) $4\sqrt{6}$
- Q.42 If a and b are two vectors, then-
 - (1) $|\vec{a} \times \vec{b}| \ge |\vec{a}| |\vec{b}|$ (2) $|\vec{a} \times \vec{b}| \le |\vec{a}| |\vec{b}|$
 - (3) $|\vec{a} \times \vec{b}| > |\vec{a}| |\vec{b}|$
- $(4) |\vec{a} \times \vec{b}| < |\vec{a}| |\vec{b}|$
- Q.43 The unit vector perpendicular to vectors $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$ is-

 - (1) $\frac{1}{\sqrt{3}} (\hat{i} \hat{j} + \hat{k})$ (2) $\frac{1}{\sqrt{3}} (\hat{i} + \hat{j} \hat{k})$
- (3) $\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$ (4) None of these
- **Q.44** If $|(\vec{a} \times \vec{b})|^2 + (\vec{a} \cdot \vec{b})^2 = 144$ and $|\vec{a}| = 4$, then $|\vec{b}|$ is equal to -

 - (1) 3 (2) 8 (3) 12
- (4) 16
- **Q.45** In a parallelogram PQRS, $\overrightarrow{PQ} = \overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{PR} =$ $\vec{a} - \vec{b}$, then its vector area is-
 - (1) $|\vec{a}|^2 |\vec{b}|^2$
- $(2) \vec{a} \times \vec{b}$
- (3) $2(\vec{a} \times \vec{b})$
- $(4) \ 2(\vec{b} \times \vec{a})$
- **Q.46** Two constant forces $\vec{P} = 2\hat{i} 5\hat{j} + 6\hat{k}$ and $\vec{Q} = -\hat{i} + 2\hat{j} - \hat{k}$ are acting on a point A (4,-3,-2). The moment of their resultant about origin (0, 0, 0) is-

- (1) $21\hat{i} + 22\hat{j} + 9\hat{k}$
- (2) $-(21\hat{i} + 22\hat{j} + 9\hat{k})$
- (3) $21\hat{i} 22\hat{j} 9\hat{k}$
- (4) None of these

SCALAR TRIPLE PRODUCT

- **Q.47** If $\vec{a} = 4\hat{i} 3\hat{j} + \hat{k}$, $\vec{b} = 3\hat{i} + 2\hat{j} \hat{k}$ & $\vec{c} = 3\hat{i} \hat{j} + 2\hat{k}$ represent three coterminous edges of a parallelopiped then its volume is-
 - (1)60
- (2) 15
- (3)30
- **Q.48** If \vec{a} , \vec{b} , \vec{c} are mutually perpendicular unit vectors, then [a b c] equals-
- $(2) \pm 1$
- (3)3
- (4)1
- **Q.49** Three vectors $\hat{i} \hat{j} \hat{k}$, $-\hat{i} + \hat{j} \hat{k}$ & $-\hat{i} \hat{j} + \hat{k}$ are-
 - (1) coplanar
 - (2) non-coplanar
 - (3) two are perpendicular to each other
 - (4) none of these
- **Q.50** If \vec{a} , \vec{b} , \vec{c} are any three coplanar unit vectors
 - (1) $\vec{a} \cdot (\vec{b} \times \vec{c}) = 1$
- (2) $\vec{a} \cdot (\vec{b} \times \vec{c}) = 3$
- (3) $(\vec{a} \times \vec{b}) \cdot \vec{c} = 0$
- (4) $(\vec{c} \times \vec{a}) \cdot \vec{b} = 1$
- **Q.51** For any non-zero vector \vec{d} ; \vec{d} . $\vec{a} = \vec{d}$. $\vec{b} = \vec{d}$. $\vec{c} = 0$ then [a b c] equals-
 - (1)0
- (2) 1
- (2) 1
- (4) None of these
- **Q.52** If \vec{a} , \vec{b} , \vec{c} are coplanar vectors, then which of the following are non-coplanar vectors-
 - (1) $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{a}$
 - (2) $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$
 - (3) $\vec{a} \vec{b}$, $\vec{b} \vec{c}$, $\vec{c} \vec{a}$
 - (4) None of these

VECTOR TRIPLE PRODUCT

- **Q.53** $\vec{a} \times (\vec{b} \times \vec{c})$ is coplanar with-
 - (1) \vec{a} and \vec{b}
- (2) \vec{b} and \vec{c}
- (3) \vec{c} and \vec{a}
- (4) None of these
- **Q.54** For three vectors \vec{a} , \vec{b} , \vec{c} correct statement is-
 - (1) $\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{a} \times \vec{c})$
 - (2) $(\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \times \vec{c})$
 - (3) $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$
 - (4) None of these

- **Q.55** For any vectors \vec{a} , \vec{b} , \vec{c} correct statement is-
 - (1) $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$
 - (2) $\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$
 - (3) $\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{a} \cdot \vec{b} \times \vec{a} \cdot \vec{c}$
 - (4) $\vec{a} \cdot (\vec{b} \vec{c}) = \vec{a} \cdot \vec{b} \vec{a} \cdot \vec{c}$
- Q.56 Which of the following is true statement-
 - (1) $(\vec{a} \times \vec{b}) \times \vec{c}$ is coplanar with \vec{c}
 - (2) $(\vec{a} \times \vec{b}) \times \vec{c}$ is perpendicular to \vec{a}
 - (3) $(\vec{a} \times \vec{b}) \times \vec{c}$ is perpendicular to \vec{b}
 - (4) $(\vec{a} \times \vec{b}) \times \vec{c}$ is perpendicular to \vec{c}
- **Q.57** $(\vec{a} \times \vec{b}) \times \vec{c}$ equals-
 - (1) $(\vec{a}.\vec{c})\vec{b} (\vec{a}.\vec{b})\vec{c}$
 - (2) $(\vec{a}.\vec{b})\vec{c} (\vec{a}.\vec{c})\vec{b}$
 - (3) $(\vec{b}.\vec{c})\vec{a} (\vec{a}.\vec{c})\vec{b}$
 - (4) $(\vec{a}.\vec{c})\vec{b} (\vec{b}.\vec{c})\vec{a}$
- **Q.58** $(\hat{i} \times \hat{j}).[(\hat{j} \times \hat{k}) \times (\hat{k} \times \hat{i})]$ equals-
 - (1)0(2)1
- (3) -1(4)2

ANSWER KEY

TOPIC WISE QUESTIONS

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	4	2	4	2	3	4	1	4	3	1	1	1	4	3
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	2	2	4	2	3	1	2	3	1	3	3	1	4	2	2
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	1	1	4	4	1	2	3	2	1	2	3	2	1	1	4
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58		
Ans.	2	3 🖊	2	2	3	1	4	2	2	4	4	4	2		

