KHAN GLOBAL STUDIES

K.G.S. campus, Near Sai Mandir, Mussalahpur Hatt, Patna – 6 Mob.: 8877918018, 8757354880

Defence (Mathematics)

By: Prashant Sir

Sequence and Series short note

AP is a sequence whose terms increase or decreased by a fixed number

 $a \rightarrow \text{first term}$

 $d \rightarrow \text{common difference}$

AP: a, a + d, a + 2d, a + 3d, ...

- nth term of AP $T_n = a + (n-1)d$ Where $d = T_n - T_{n-1}$, $n \ge 2$
- Sum of first n terms

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

 $S_n = \frac{n}{2}(a+l)$, where $l \to \text{last term}$

 $\bullet \quad T_n = S_n - S_{n-1}, \ n \ge 2$

Series: In a sequence, the sum of the directed terms is called a series.

Ex- 1, 2, 3, 4.... Sequence then

 $1+2+3+4+\cdots$ is called a series

 $T_1, T_2, T_3, ..., T_n \rightarrow \text{sequence}.$

then $S_n = T_1 + T_2 + \dots + T_n$

 $\prod_{i=1}^{n} I_{i} I_{i$

 $S_n = \sum_{r=1}^n T_r$

Finite Series: A series having finite no of terms is called a finite series.

Ex- $1 + 2 + 3 + \cdots + 10$

Infinite Series : A series having an infinite number of terms is called an infinite series $1+2+3+\cdots+n$

Note:

- 1. If $a_{1}, a_{2}, a_{3}, ..., a_{n-1}, a_{n} \rightarrow AP$ $a_{1} + k, a_{2} + k, a_{3} + k, a_{n-1} + k, a_{n} + k \rightarrow AP$ $a_{1} k, a_{2} k, a_{3} k, a_{n-1} k, a_{n} k \rightarrow AP$ $k \rightarrow AP$ $k a_{1}, k a_{2}, k a_{3}, k a_{n-1}, k a_{n} \rightarrow AP$ $\frac{a_{1}}{k}, \frac{a_{2}}{k}, ... \frac{a_{n-1}}{k}, \frac{a_{n}}{k} \rightarrow AP$ $(k \neq 0)$
- 2. $a_1, a_2, \ldots, a_n \to AP (1^{st})$ $b_1, b_2, \ldots, b_n \to AP (2^{nd})$

Then

 $a_1 + b_1, a_2 + b_2, \dots (a_n + b_n) \to AP$

3. When sum of Numbers of given

3 terms a - d, a, a + d

4 terms a - 3d, a - d, a + d, a + 3d

5 terms a - 2d, a - d, a, a + d, a + 2d

- 4. If $a_1, a_2, \dots, a_{n-1}, a_n$ an are in AP then $a_1 + a_n = a_2 + a_{n-1} = a_3 + a_{n-2} = \cdots$
- 5. If sum of first n terms of an AP is of the form $An^2 + Bn$ ie, a Quadratic expression in n then common difference is twice the coefficient of n^2 ie 2A.
- 6. If $T_n = An + B$ (linear in n) then d = A
- 7. In AP if $T_p = q$ and $T_q = p$ then $T_r = p + q r$
- 8. Common difference of an AP may be positive, zero, negative or imaginary
- 9. Constant AP : d = 0
- 10. Increasing AP : d > 0
- 11. Decreasing AP: d < 0
- 12. *n*th term from end (In case of AP) $T'_{n} = l (n-1)d, \text{ where } l = \text{last term}$
- 13. a, b, c are in AP then 2b = a + c
- 14. First negative term = largest negative term
- 15. If ratio of the sums of *n* terms of two AP's is given by

$$\frac{S_n}{S'_n} = \frac{\text{Pn+Q}}{Rn+S} (P, R \neq 0)$$

then
$$\frac{t_n}{t'_n} = \frac{P(2n-1)+Q}{R(2n-1)+S}$$

$$\frac{d}{d'} = \frac{P}{R}$$

where

 t_n , S_n , $d \to \text{are } nth \text{ term}$, sum of first n terms and common difference of first AP respectively

$$t_n', S_n', d' \rightarrow \text{For } 2^{\text{nd}} \text{ AP}$$

16. In case of two AP

$$\frac{t_n}{t_n} = \frac{Pn+Q}{Pn+Q}$$

Then
$$\frac{S_n}{S_{n'}} = \frac{P^{(n+1)}}{2} + Q$$

GP (Geometric Progression)

GP is a sequence of non zero numbers whose succeeding terms is equal to the preceding terms multiplied by a constant

$$T_1, T_2, T_3, \dots, T_{n-1}, T_n \to GP$$

If $\frac{T_2}{T_1} = \frac{T_3}{T_2} = \dots = \frac{T_n}{T_{n-1}} = r$

 $r \rightarrow \text{common ratio}$

GP are a, ar, ar^2 , ar^{n-1}

$$T_n = ar^{n-1} \rightarrow \text{nth term}$$

$$S_n = \text{Sum of first } n \text{ terms}$$

$$= a \frac{(r^n - 1)}{r - 1} \text{ if } r \neq 1$$

If r = 1

Then all terms are same

Infinite GP

When
$$|r| < 1$$
 ie $-1 < r < 1$

$$S_{\infty} = \frac{a}{1-r}; |r| < 1$$

- In GP neither a = 0 nor r = 0
- r may be positive, negative or Imaginary
- Constant GP r = 1

Increasing GP / Decreasing GP

- 1. If a > 0
 - (1) $r > 1 \rightarrow Increasing GP$
 - (2) $0 < r < 1 \rightarrow Decreasing GP$
- 2. If a < 0
 - (1) $r > 1 \rightarrow$ Decreasing GP
 - (2) $0 < r < 1 \rightarrow Increasing GP$
- a, b, c are in GP and a > 0, b > 0, c > 0 then $\log a$, $\log b$, $\log c$ are in AP converse also holds.
- If $a_1, a_2, a_3, ..., a_n$ are in GP then $\frac{1}{a_1}, \frac{1}{a_2}$, ..., $\frac{1}{a_n}$ are also in GP
- If $a_1, a_2, \dots a_n$ are in GP then
 - (a) $a_n, a_{n-1}, ..., a_2, a_1$ are also in GP
 - (b) a_1^n , a_2^n , a_3^n ..., are also in GP $(n \in Q)$
- If a_1 , a_2 , ..., a_n and b_1 , b_2 , ... b_n are two GP's then
 - (a) a_1b_1 , a_2b_2 , ... a_nb_n are also in GP
 - (b) $\frac{a_1}{b_1}, \frac{a_2}{b_2}, \dots, \frac{a_n}{b_n}$ are also in GP
- If $a_1, a_2,, a_n$ are in GP then $a_1 a_n = a_2 a_{n-1} = a_3 a_{n-2} = \cdots$
- When product is given (GP)

3 terms $\frac{a}{x}$, a, ar

4 terms $\frac{a}{r^3}$, $\frac{a}{r}$, ar, ar^3 5 terms $\frac{a}{r^2}$, $\frac{a}{r}$, a, ar, ar^2

Harmonic Progression

A harmonic progression (HP) is a sequence if the reciprocals of its terms are in AP

 a_1, a_2, \ldots are in HP if and only if $\frac{1}{a_1}$

 $\frac{1}{a_2}, \dots, \frac{1}{a_n}$, in are in HP

- No term of HP can be zero
- If a, b, c are in HP then

$$\frac{1}{a}$$
, $\frac{1}{b}$, $\frac{1}{c}$ are in AP

$$\frac{2}{b} = \frac{1}{a} + \frac{1}{c} \Rightarrow b = \frac{2ac}{a+c}$$

•nth term of HP

let a be the first term and d be the common difference of

An AP $\Rightarrow T_n = a + (n-1)d$ (AP)

Then nth term of HP

$$= \frac{1}{a + (n-1)d}$$

Arithmetic Mean

If three terms are in AP then the middle term is called the AM between the other

So if a, b, c are in AP then b is AM of a and

•Single $a_1, a_2, ..., a_n$ AM of n positive

Let are n positive numbers then

AM of these numbers are

$$A = \frac{a_1 + a_2 + \dots + a_n}{n}$$

Ex AM of 5a, 3b and 9c is $\frac{5a+3b+9c}{2}$

- n AM's b/w two Nos a and b
 - $a, A_1, A_2, \dots, A_n, b \rightarrow AP$

$$=T_0=a+a$$

$$A_1 = T_2 = a + d$$

$$A_2 = T_3 = a + 2d$$

$A_n = T_{n+1} = a + nd$

Where
$$d = \frac{b-a}{n+1}$$

$$n \rightarrow \text{no of AM's}$$

 $A_1 + A_2 + \dots + A_n = \sum_{r=1}^n A_r$

Geometric Mean

Single GM of *n* positive numbers

GM of n positive numbers

$$a_1, a_2, ..., a_n$$
 be

$$G=(a_1,a_2,\ldots,a_n)^{\frac{1}{n}}$$

- If a > 0, b > 0 then $G = (ab)^{\frac{1}{2}}$
- If a < 0, b < 0 then $G = -(ab)^{\frac{1}{2}}$
- If a > 0 and b < 0 or a < 0 and b > 0 then $GM \rightarrow DNE$
- If a, b, c are in GP then b is GM b/w a and c

n geometric mean b/w two numbers

$$\overline{a}, \underbrace{G_1, G_2, \dots, G_n}_{n \ GM's}, b \to GP$$

$$G_1 = T_2 = ar$$

$$G_2 = T_3 = ar^2$$

-

$$G_n = T_{n+1} = ar^n$$

Where

$$r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}}$$

 $n \rightarrow \text{no of GM's}$

•
$$G_1. G_2 ... G_n = \prod_{r=1}^n G_r = (\sqrt{ab})^n$$

 $n \rightarrow \text{no of GM's}$

• *a* and *b* are the roots of equation

$$x^2 - 2Ax + G^2 = 0$$

Where

A = AM b/w a and b

G = GM b/w a and b

• a and b are given by

$$A \pm \sqrt{A^2 - G^2}$$

Harmonic Mean

If a, b, c are in HP then

b = HM b/w a and c

$$b = \frac{2ac}{a+c}$$

Single HM of n positive numbers

HM of n positive numbers

$$a_1, a_2, a_3, \dots, a_n$$

$$H = \frac{n}{\left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right)}$$

• 2, 3, 6 are in HP (Let)

Relation b/w A,G,H

- (1) If A, G, H are respectively AM, GM, HM between two positive number *a* and *b* then
 - (1) $G^2 = AH$
 - (2) $A \ge G \ge H$
 - (3) $A = G = H \Rightarrow a = b$

Arithmetico -Geometric Series

$$a, a + d, a + 2d, \dots a + (n-1)d \to AP$$

 $1, r, r^2, r^3, \dots r^{n-1} GP$

$$a, (a + d)r, (a + 2d)r^2, ..., [a + (n -$$

$$1)d$$
 $r^{n-1} \rightarrow AGP$

If
$$|r| < 1$$
 and $n \to \infty$

Then
$$S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2}$$

Summation

(a)
$$\sum_{r=1}^{n} (a_r + b_r) = \sum_{r=1}^{n} a_r \pm \sum_{r=1}^{n} b_r$$

(b)
$$\sum_{r=1}^{n} k a_r = k \sum_{r=1}^{n} a_r$$

(c)
$$\sum_{r=1}^{n} k = nk$$
, $k = \text{constant}$

Results

(a)
$$\sum_{r=1}^{n} r = \frac{n(n+1)}{2}$$

(b)
$$\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$$

(c)
$$\sum_{r=1}^{n} r^3 = \left[\frac{n(n+1)}{2}\right]^2$$

(d)
$$\sum_{r=1}^{n} r^4 = \frac{n}{30} (n+1)(2n+1)(3n^2+3n-1)$$

(e)
$$\sum_{r=1}^{n} 2r - 1 = n^2$$

(f)
$$\sum_{r=1}^{n} 2r = n(n+1)$$

- If rth term of any series is given $\rightarrow T_r$ then $S_n = \sum_{r=1}^n T_r$
- If $pT_p = qT_q$ of an AP then $T_{p+q} = 0$
- If $S_p = q$ and $S_q = p$ for an AP Then $S_{p+q} = -(p+q)$
- In case of HP

$$T_m = n \text{ and } T_n = m$$

Then
$$T_r = \frac{mn}{r}$$

$$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - \dots =$$

$$\begin{cases} \frac{n(n+1)}{2}, n \text{ odd} \\ -\frac{n(n+1)}{2}, n \text{ even} \end{cases}$$