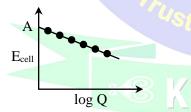
Chapter

Electro Chemistry

JEE -RANKER'S STUFF

SINGLE CORRECT QUESTIONS

- During electrolysis of an aqueous solution of Cu²⁺ sulphate, 0.635g of copper was deposited at cathode. The amount of electricity consumed in coulomb is-
- - (1) 1930 (2) 3860 (3) 9650 (4) 4825
- The reduction potential of the two half cell reactions Q.2(occurring in an electrochemical cell) are

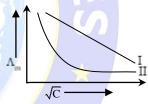

PbSO₄ + 2e⁻
$$\rightarrow$$
 Pb + SO₄²⁻ (E° = -0.31V)

$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s) (E^{o} = +0.80V)$$

The feasible reaction will be –

- (1) $Pb + SO_4^{2-} + 2Ag^+$ (aq) $\rightarrow 2Ag(s) + PbSO_4$
- (2) $PbSO_4 + 2Ag^+(aq) \rightarrow Pb + SO_4^{2-} + 2Ag(s)$
- (3) $Pb + SO_4^{2-} + Ag(s) \rightarrow Ag^+(aq) + PbSO_4$
- (4) $PbSO_4 + Ag(s) \rightarrow Ag^+(aq) + Pb + SO_4^{-2}$
- Q.3 $\operatorname{Zn} + \operatorname{Cu}^{2+}(\operatorname{aq}) \rightleftharpoons \operatorname{Cu} + \operatorname{Zn}^{2+}(\operatorname{aq})$

Reaction quotient is Q =



Variation of E_{cell} with log Q is of the type with $OA = 1.10 \text{ V. } E_{cell} \text{ will be } 1.1591 \text{ V when:}$

- (1) $\frac{\left[Cu^{2+}\right]}{\left[Zn^{2+}\right]} = 0.01$ (2) $\frac{\left[Zn^{2+}\right]}{\left[Cu^{2+}\right]} = 0.01$
- (3) $\frac{\left[Zn^{2+}\right]}{\left[Cu^{2+}\right]} = 0.1$ (4) $\frac{\left[Zn^{2+}\right]}{\left[Cu^{2+}\right]} = 1$
- **Q.4** For $I_2 + 2e^- \rightarrow 2I^-$, standard reduction potential = + 0.54 volt. For $2Br^- \rightarrow Br_2 + 2e^-$ standard oxidation potential = +1.09 volt.

For Fe \rightarrow Fe⁺² + 2e⁻, Standard oxidation potential = +0.44 volt. Which of the following reactions is non-spontaneous -

- (1) $Br_2 + 2I^- \rightarrow 2Br^- + I_2$
- (2) Fe + Br₂ \rightarrow Fe²⁺ + 3Br⁻
- (3) Fe + $I_2 \rightarrow Fe^{2+} 2I^{-}$
- (4) $I_2 + 2Br^- \rightarrow 2I^- + Br_2$
- **Q.5** Below plot represents the variation of molar conductance against \sqrt{C} (where C = molarconcentration of the electrolyte). Select the correct option among following –

- (1) Both I and II are for strong electrolyte
- (2) Both I and II are for weak electrolyte
- (3) I is for strong electrolyte and II for weak electrolyte
- (4) I is for weak electrolyte and II for strong electrolyte
- $Zn \mid Zn^{2+}(c_1) \parallel Zn^{2+}(c_2) \mid Zn$ for this cell ΔG is negative if -
 - (1) $C_1 = C_2$
- (2) $C_1 > C_2$ (3) $C_2 > C_1$
- (4) None
- **Q.7** Equivalent conductance of saturated BaSO₄ is 400 ohm⁻¹cm²equi⁻¹ and specific conductance is 8×10^{-5} ohm⁻¹cm⁻¹. Hence K_{sp} of BaSO₄ is -
 - $(1) 4 \times 10^{-8} \,\mathrm{M}^2$
- (2) $1 \times 10^{-8} \,\mathrm{M}^2$
- $(3) 2 \times 10^{-4} \,\mathrm{M}^2$
- (4) $1 \times 10^{-4} \text{M}^2$
- The ionic conductance of X^{2+} and Y^{-} are 100 and **Q.8** $200 \ \Omega^{-1} \ \text{cm}^2 \ \text{egv}^{-1}$ respectively. The equivalent pconductance of XY₂ at infinite dilution is (in $ohm^{-1} cm^2 eqv^{-1}$

ELECTRO CHEMISTRY

(1) 300

(2) 150

(3)600

(4)250

Q.9 Which of the following reaction is possible at anode?

(1)
$$F_2 + 2e^- \longrightarrow 2F^-$$

(2)
$$2H^+ + \frac{1}{2}O_2 + 2e^- \longrightarrow H_2O$$

(3)
$$2Cr^{3+} + 7H_2O \longrightarrow Cr_2O_7^{2-} + 14H^+ + 6e^-$$

$$(4) Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$$

Q.10 For a cell reaction involving a two-electron change the standard e.m.f. of the cell is found to be 0.295 V at 25°C. The equilibrium constant of the reaction of 25°C will be -

- $(1)\ 10$
- $(3)\ 1\times 10^{-10}$
- $(4) 29.5 \times 10^{-2}$

Q.11 In a cell that utilises the reaction

$$Zn_{(s)} + 2H_{(aq)}^+ \longrightarrow Zn_{(aq)}^{2+} + H_{2(g)}$$

addition of H₂SO₄ to cathode compartment, will-

- (1) lower the E and shift equilibrium to the left
- (2) lower the E and shift equilibrium right
- (3) increase the E and shift equilibrium to the
- (4) increase the E and shift equilibrium to the left

Q.12 The correct order of equivalent conductance at infinite dilution of LiCl, NaCl and KCl is

- (1) LiCl > NaCl > KCl
- (2) KCl > NaCl > LiCl
- (3) NaCl > KCl > LiCl
- (4) LiCl > KCl > NaCl

Q.13 If x is specific resistance of the electrolyte solution and y is the molarity of the solution, then $\Lambda_{\rm m}$ is given by

- (1) $\frac{1000x}{v}$
- (2) 1000 ^y
- $(4) \frac{xy}{100}$

Q.14 Aluminium oxide may be electrolysed at 1000°C to furnish aluminium metal (At. Mass = 27 amu; 1 Faraday = 96,500 Coulombs). The cathode reaction is $Al^{3+} + 3e^{-} \longrightarrow Al$ To prepare 5.12 kg of aluminium metal by this method would require –

(1) 1.83×10^7 C of electricity

(2) 5.49×10^7 C of electricity

(3) 5.49×10^{1} C of electricity

(4) 5.49×10^4 C of electricity

Q.15 For a spontaneous reaction the ΔG , equilibrium constant (K) and E_{cell} will be respectively –

- (1) + ve, > 1, -ve
- (2) -ve, > 1, +ve
- (3) -ve, > 1, -ve
- (4) -ve. < 1. -ve

Q.16 A solution of copper sulphate (CuSO₄) is electrolysed for 10 minutes with a current of 1.5 amperes. The mass of copper deposites at the cathode (at. mass of Cu = 63 u) is –

- (1) 0.3892 g
- (2) 0.2938 g
- (3) 0.2398 g
- (4) 0.3928 g

Q.17 A current of 10.0 A flows for 2.00 h through an electrolytic cell containing a molten salt of metal X. This results in the decomposition of 0.250 mol or metal X at the cathode. The oxidation state of X in the molten salt is:

$$(F = 96, 500 C)$$

$$(1) 1 + (2) 2 +$$

$$(3) 3 +$$

$$(4) 4 +$$

Q.18

Electrolyte:	KCl	KNO ₃	HCl	NaOAc	NaCl
λ^{∞} (S cm ² mol ⁻¹)	149.9	145	426.2	91	126.5

using appropriate molar Calculate $\Lambda_{\text{HOAc}}^{\infty}$ conductances of the electrolytes listed above the infinite dilution in H₂O at 25°C

- (1) 217.5
- (2)390.7
- (3) 552.7
- (4) 517.2

Q.19 Which of the following expressions correctly represents the equivalent conductance at infinite dilution of Al₂(SO₄)₃, Given that $\Lambda_{A^{3+}}$ and $\Lambda_{so^{2-}}^{\circ}$ are the equivalent conductances at infinite dilution of the respective ions?

$$(1) \ \frac{1}{3} \Lambda_{\text{Al}^{3+}}^{\circ} + \frac{1}{2} \Lambda_{\text{SO}_4^{2-}}^{\circ} \quad (2) \ 2 \Lambda_{\text{Al}^{3+}}^{\circ} + 3 \Lambda_{\text{SO}_4^{2-}}^{\circ}$$

$$(2) \ 2\Lambda_{AI^{3+}}^{\circ} + 3\Lambda_{SO_4^{2-}}^{\circ}$$

$$(3) \ \Lambda_{Al^{3+}}^{\circ} + \Lambda_{SO_4^2}^{\circ}$$

(3)
$$\Lambda_{A^{3+}}^{\circ} + \Lambda_{SO_4^{2-}}^{\circ}$$
 (4) $\left(\Lambda_{A^{3+}}^{\circ} + \Lambda_{SO_4^{2-}}^{\circ}\right) \times 6$

Q.20 $\Lambda_{CICHACOONa} = 224 \text{ ohm}^{-1} \text{ cm}^2 \text{ gm eq}^{-1},$

CHEMISTRY

 $\Lambda_{\text{NaCl}} = 38.2 \text{ ohm}^{-1} \text{ cm}^2 \text{ gm eq}^{-1}$

 $\Lambda_{HCl} = 203 \text{ ohm}^{-1} \text{ cm}^2 \text{ gm eq}^{-1},$

What is the value of Λ_{CICH_2COOH}

- (1) $288.5 \text{ ohm}^{-1} \text{ cm}^2 \text{ gm eq}^{-1}$
- (2) 289.5 ohm⁻¹ cm² gm eq⁻¹
- (3) $388.8 \text{ ohm}^{-1} \text{ cm}^2 \text{ gm eq}^{-1}$
- (4) 59.5 ohm⁻¹ cm² gm eq⁻¹
- Q.21 What will be the emf for the given cell $Pt|H_2(P_1)|H^+(aq)||H_2(P_2)|Pt$

 - (1) $\frac{RT}{F} \log_e \frac{P_1}{P_2}$ (2) $\frac{RT}{2F} \log_e \frac{P_1}{P_2}$

 - (3) $\frac{RT}{F} log_e \frac{P_2}{P}$ (4) None of these
- Q.22 Specific conductance of 0.1 M HNO₃ is $6.3 \times$ 10⁻² ohm⁻¹ cm⁻¹. The molar conductance of the solution is
 - (1) 100 ohm⁻¹ cm² mol⁻¹
 - $(2) 515 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$
 - $(3) 630 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$
 - $(4) 6300 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$
- **Q.23** Consider the following four electrodes:
 - $P = Cu^{2+} (0.0001 \text{ M})/Cu(s)$
 - $Q = Cu^{2+} (0.1 \text{ M})/Cu(s)$
 - $R = Cu^{2+} (0.01 \text{ M})/Cu(s)$
 - $S = Cu^{2+} (0.001 \text{ M})/Cu(s)$

If the standard reduction potential of Cu²⁺/Cu is +0.34 V, the reduction potentials in volts of the above electrodes follow the order.

- (1) P > S > R > Q
- (2) S > R > Q > P
- (3) R > S > Q > P
- (4) Q > R > S > P
- **Q.24** What is the amount of chlorine evolved when 2 amperes of current is passed for 30 minutes in an aqueous solution of NaCl?

 - (1) 66 g (2) 1.32 g (3) 33 g
- (4)99g
- **Q.25** In the electrochemical reaction

$$2Fe^{3+} + Zn \longrightarrow Zn^{2+} + 2Fe^{2+}$$
,

on increasing the concentration of Fe²⁺

- (1) increases cell emf
- (2) increases the current flow
- (3) decreases the cell emf
- (4) alters the pH of the solution
- **Q.26** Co | Co²⁺ (C₂) || Co²⁺ (C₁) | Co for this cell, ΔG is negative if:

- (1) $C_2 > C_1$
- (2) $C_1 > C_2$
- (3) $C_1 = C_2$
- (4) unpredictable
- **Q.27** Which represent a concentration cell?
 - (1) Pt | H₂ | HCl | | HCl | Pt | H₂
 - (2) Pt | H₂ | HCl | Cl₂ | Pt
 - (3) $Zn | Zn^{2+} || Cu^{2+} | Cu$
 - (4) Fe | Fe⁺² || Cu²⁺ | Cu
- Q.28 By the electrolysis of aqueous solution of CuSO₄, the products obtained at both the electrodes are
 - (1) O₂ at anode and H₂ at cathode
 - (2) H₂ at anode and Cu at cathode
 - (3) O₂ at anode and Cu at cathode
 - (4) H₂S₂O₈ at anode and O₂ at cathode
- Q.29 For a cell reaction involving a two electron change, the standard emf of the cell is found to be 0.295 V at 25°C. The equilibrium constant of the reaction at 25°C will be:
 - (1) 1×10^{-10}
- (2) 29.5×10^{-2}
- $(3)\ 10$
- (4) 1×10^{10}
- **Q.30** Consider the following E⁰ values:

$$E^{0}_{Fe^{3+}/Fe^{2+}} = +0.77 \text{ V}; E^{0}_{Sn^{2+}/Sn} = -0.14 \text{ V}$$

Under standard conditions, the cell potential for the reaction given below is:

- $Sn_{(s)} + 2Fe^{3+}_{(aq)} \rightarrow 2Fe^{2+}_{(aq)} + Sn^{2+}_{(aq)}$
- (1) 1.68 V
- (2) 1.40 V
- (3) 0.91 V
- (4) 0.63 V
- **Q.31** The molar conductivities Λ_{NAOAC}^{0} and Λ_{HCI}^{0} at infinite dilution in water at 25°C are 91.0 and 426.2 S cm²/mol respectively. To calculate Λ_{HOAc}^{0} , the additional value required is:
 - $(1) \Lambda_{H_2O}^0$
- (2) Λ_{KCI}^{0}
- $(3) \Lambda_{N_2OH}^0$
- (4) $\Lambda_{\rm NaCl}^0$
- **Q.32** The cell $Zn \mid Zn^{2+}(1M) \parallel Cu^{2+}(1M) \mid Cu : (E^{\circ}_{cell})$ = 1.10 V) was allowed to completely discharge at 298 K. The relative concentration of Zn²⁺ to

$$Cu^{2+} \left(\frac{\left[Zn^{2+} \right]}{\left[Cu^{2+} \right]} \right)$$
 is : (Take $\frac{1.1}{0.059} = 18.65$)

- $(1)\ 10^{37.3}$
- (2) 9.65×10^4
- (3) antilog (24.08)
- (4) 37.3

- **Q.33** Resistance of 0.2 M solution of an electrolyte is 50 Ω . The specific conductance of the solution is 1.4 S m⁻¹. The resistance of 0.5 M solution of the same electrolyte is 280 Ω . The molar conductivity of 0.5 M solution of the electrolyte in S m^2 mol⁻¹ is:
 - $(1) 5.6 \times 10^{-4}$
- $(2) 5.6 \times 10^{-3}$
- $(3) 5.6 \times 10^3$
- $(4) 5.6 \times 10^2$
- Q.34 The equivalent conductance of NaCl at concentration C and at infinite dilution are Λ_C and Λ_{∞} , respectively. The correct relationship between Λ_C and Λ_{∞} is given as : (where the constant B is positive)
 - (1) $\Lambda_{\rm C} = \Lambda_{\infty} + (b)C$ (2) $\Lambda_{\rm C} = \Lambda_{\infty} (b)C$
 - (3) $\Lambda_{\rm C} = \Lambda_{\infty} (b) \sqrt{C}$ (4) $\Lambda_{\rm C} = \Lambda_{\infty} + (b) \sqrt{C}$
- Q.35 The metal that cannot be obtained by electrolysis of an aqueous solution of its salts is:
 - (1) Ag
- (2) Ca
- (3) Cu
- **Q.36** The standard electrode potentials $(E_{M^+/M}^{\circ})$ of four metals A, B, C and D are -1.2 V, 0.6 V, 0.85 V and -0.76 V, respectively. The sequence of deposition of metals on applying potential is:
 - (1) A, C, B, D
- (2) B, D, C, A
- (3) C, B, D, A
- (4) D, A, B, C
- Q.37 Which of the statements about solutions of electrolytes is not correct?
 - (1) Conductivity of solution depends upon size of ions
 - (2) Conductivity depends upon viscosity of solution
 - (3) Conductivity does not depend upon solvation of ions present in solution
 - (4) Conductivity of solution increases with temperature
- **Q.38** The $E_{M^{3+}/M^{2+}}^{0}$ values for Cr, Mn, Fe and Co are -0.41, +1.57, +0.77 and +1.97 V respectively. For which one of these metals the change in oxidation state from +2 to +3 is easiest?
 - (1) Fe
- (2) Mn
- (3) Cr
- (4) Co
- **Q.39** The chemical reaction,

- $2AgCl(s) + H_2(g) \longrightarrow 2HCl (aq) + 2Ag(s)$ taking place in a galvanic cell is represented by the notation.
- (1) $Pt(s)|H_2(g).1bar|1MKCl(aq)|AgCl(s)|Ag(s).$
- (2) $Pt(s)|H_2(g).1bar|1MHCl(aq)|1MAg(aq)|Ag(s).$
- (3) $Pt(s)|H_2(g).1bar|1MHCl(aq)|AgCl(s)|Ag(s).$
- (4) $Pt(s)|H_2(g).1bar|1MHCl(aq)|Ag(s)|AgCl(s).$
- **Q.40** The molar conductivities \wedge_{NaOAc}^{0} and \wedge_{HCI}^{0} at infinite dilution in water at 25°C are 91.0 and 426.2 S cm²/mol respectively. To calculate \wedge_{HOAC}^{0} the additional value required is:

- (1) \wedge_{NaCl}^{0} (2) $\wedge_{\text{H₂O}}^{0}$ (3) \wedge_{KCl}^{0} (4) \wedge_{NaOH}^{0}
- **0.41** Resistance of 0.2 M solution of an electrolyte is 50 Ω . The specific conductance of the solution is 1.3 S m⁻¹. If resistance of the 0.4M solution of the same electrolyte is 260 Ω , its molar conductivity is :-
 - (1) $6250 \text{ S m}^2 \text{ mol}^{-1}$
 - (2) 6.25×10^{-4} S m² mol⁻¹
 - (3) $625 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$
 - (4) 62.5 S m² mol⁻¹
- **0.42** Given the data at 25°C,

$$Ag + I^{-} \rightarrow AgI + e^{-}, E^{\circ} = 0.152 \text{ V}$$

$$Ag \rightarrow Ag^{+} + e^{-}, E^{\circ} = -0.800 \text{ V}$$

What is the value of log Ksp for AgI?

$$\left(2.303 \frac{RT}{F} = 0.059V\right)$$

- (1) -8.12 (2) +8.612 (3) -37.83 (4) -16.13
- **O.43** Equal volumes of 0.015 M CH₃COOH & 0.015 M NaOH are mixed together. What would be molar conductivity of mixture if conductivity of CH₃COONa is 6.3×10^{-4} S cm⁻¹.
 - (1) $8.4 \text{ S cm}^2 \text{ mol}^{-1}$ (2) $84 \text{ S cm}^2 \text{ mol}^{-1}$
 - (3) $4.2 \text{ S cm}^2 \text{ mol}^{-1}$ (4) $42 \text{ S cm}^2 \text{ mol}^{-1}$
- Q.44 The dissociation constant of n-butyric acid is 1.6×10^{-5} and the molar conductivity at infinite

CHEMISTRY

dilution is 380×10⁻⁴ S m² mol⁻¹. The specific conductance of the 0.01 M acid solution is

- (1) $1.52 \times 10^{-5} \,\mathrm{S} \;\mathrm{m}^{-1}$ (2) $1.52 \times 10^{-2} \,\mathrm{S} \;\mathrm{m}^{-1}$
- (3) $1.52 \times 10^{35} \,\mathrm{S m^{-1}}$ (4) None
- Q.45 The conductivity of a saturated solution of Ag_3PO_4 is 9×10^{-6} S m⁻¹ and its equivalent conductivity is $1.50 \times 10^{-4} \text{ S m}^2 \text{ equivalent}^{-1}$. The K_{sp} of Ag_3PO_4 is
 - $(1) 4.32 \times 10^{-18}$
- (2) 1.18×10^{-9}
- $(3) 8.64 \times 10^{-13}$
- (4) None of these
- **Q.46** Given standard electrode potentials

$$Fe^{3+} + 3e^{-} \longrightarrow Fe$$
; $E^{\circ} = -0.036 \text{ Volt}$

$$Fe^{2+} + 2e^{-} \longrightarrow Fe$$
; $E^{\circ} = -0.440 \text{ Volt}$

The standard electrode potential E° for $Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$ is:

- (1) -0.476 volt
- (2) -0.404 volt
- (3) 0.440 volt
- (4) +0.772 volt
- Q.47 Cu⁺ ion is not stable in aqueous solution because of disproportionation reaction. E° value for disproportionation of Cu⁺ is

(given $E^{\circ} Cu^{2+}/Cu^{+} = 0.15 V$; $E^{\circ} Cu^{2+}/Cu = 0.34 V$)

- (1) -0.19 V
- (2) 0.49 V
- (3) -0.38V
- (4) 0.38 V
- Q.48 The standard electrode potential (E°) for OCl⁻/Cl⁻ and Cl⁻ / ½ Cl₂ respectively are 0.94 V and -1.36V. The E° value of OCl⁻/ $\frac{1}{2}$ Cl₂ will be:
 - (1) -2.20 V
- (2) -0.42 V
- (3) 0.52 V
- (4) 1.04 V
- Q.49 Calculate cell potential at 298 K for following galvanic cell

 $Cd(s)|Cd^{+2}(aq.)M(0.1M)||H^{+}_{(aq)}(0.1M)|H_{2}(g,0.5a)|$

tm)|Pt
$$E_{Cd^{+2}/Cd}^{\circ} = -0.40 \text{ V}$$

- $(1) 0.38 \quad (2) -0.38 \quad (3) 0.36$
- (4) 0.36
- Q.50 A current of i ampere was passed for t sec. through three cells P, Q and R connected in series. These contain respectively silver nitrate, mercuric nitrate and mercurous nitrate. At the cathode of the cell P, 0.216 g of Ag was deposited. The weights of mercury deposited in the cathode of Q and R respectively are: (at. wt. of Hg = 200.59)
 - (1) 0.4012 and 0.8024 g

- (2) 0.4012 and 0.2006 g
- (3) 0.2006 and 0.4012 g
- (4) 0.1003 and 0.2006 g
- Q.51 A galvanic cell is set up from a zinc bar weighing 100 g and 1.0 litre of 1.0 M CuSO₄ solution. How long would the cell run if it is assumed to deliver a steady current of 1.0 amp. (Atomic mass of Zn = 65)
 - (1) 1.1 hr.

- (2) 46 hr.
- (3) 53.6 hr.
- (4) 24.00 hr.
- Q.52 The efficiency of an hypothetical cell is about 84% which involves the following reaction:

 $A(s) + B^{2+}(aq) \rightarrow A^{2+}(aq) + B(s)$: $\Delta H^{\circ} = -285 \text{ kJ}$ Then, the standard electrode potential of the cell will be (Assume as $\Delta S^{\circ} = 0$):

- (1) 1.20 V
- (2) 2.40 V
- (3) 1.10 V
- (4) 1.24 V
- **Q.53** Consider the following cell reaction:

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$
,

If H⁺ concentration is decreased from 1M to 10⁻⁴ M at 25°C, where as concentration of Mn²⁺ and MnO₄ remain 1M:

- (1) The potential decreases by 0.38 V with decrease in oxidising power
- (2) The potential increases by 0.38 V with increase in oxidising power
- (3) The potential decreases by 0.25 V with decrease in oxidising power
- (4) The potential decreases by 0.38 V without affecting oxidising power.
- Q.54 In a fuel cell methanol is used as fuel and oxygen gas is used as an oxidizer. The reaction is

$$CH_3OH(\ell) + \frac{3}{2}O_2(g) \longrightarrow CO_2(g) + 2H_2O(\ell)$$

At 298 K standard Gibb's energies of formation for CH₃OH(ℓ), H₂O(ℓ) and CO₂(g) are -166.2,

-237.2 and -394.4 kJ mol⁻¹ respectively. If standard enthalpy of combustion of methanol is – 726 kJ mol-1, efficiency of the fuel cell will be

- (1)90%
- (2)97%
- (3)80%
- (4) 87%

NUMERICAL VALUE TYPE QUESTIONS

- Q.55 How many faradays are required for reduction of 1 mol C₆H₅ NO₂ into C₆H₅NH₂?
- Q.56 If K_C for the reaction $Cu^{2+}(aq) + Sn^{2+}(aq) \longrightarrow Sn^{4+}(aq) + Cu(s)$ at 25° C is represented as 2.6×10^y then find the value of y. (Given: $E^{\circ}_{CQ^{2+}|CQ|} = 0.34 \text{ V}$; $E^{\circ}_{Sn^{4+}|Sn^{2+}} = 0.15 \text{ V}$)
- Q.57 At what pH oxidation potential of water is 0.81V?
- Q.58 Molar conductivity of aqueous solution of HA is 200 Scm² mol⁻¹, pH of this solution is 4. Calculate the value of pK_a (HA) at 25°C Given:

 $\Lambda_{M}^{\infty}(NaA) = 100 \text{ Sm}^{2} \text{mol}^{-1}; \Lambda_{M}^{\infty}(HCI) = 425 \text{ Sm}^{2} \text{mol}^{-1};$ $\Lambda_{M}^{\infty}(NaCI) = 125 \text{ Sm}^{2} \text{mol}^{-1}$

- Q.59 The resistance of conductivity cell containing 0.001 M KCl solution at 298 K is 1500Ω what is the cell constant (in mm⁻¹) if the conductivity of 0.001 M KCl solution is 2×10^{-3} S mm⁻¹.
- Q.60 When a molten salt was electrolyzed for 5 min with 9.65 A current 0.18 g of the metal was deposited. Calculate the Eq. mass of metal.
- Q.61 If ΔG^0 for the half cell MnO₄ |MnO₂ in an acid solution is -xF then find the value of x. (Given: $E^0_{cu^{2+}|cu} = 0.34V$; $E^0_{sn^{4+}|sn^{2+}} = 0.15V$)
- Q.62 Molar conductivities at infinite dilution of KCl, HCl and CH₃COOK are 0.013, 0.038 and 0.009 Sm² mol⁻¹ respectively at 291K. If conductivity of 0.001 M CH₃COOH is 2.72 × 10⁻³ S m⁻¹ then find % degree of dissociation of CH₃COOH.

STATEMENT TYPE QUESTIONS

Examine the statements carefully and mark the correct answer according to the instructions given below

(A) If both the statements are correct and STATEMENT-2 is the correct explanation of STATEMENT-1.

- (B) If both the statements are correct but STATEMENT-2 is NOT the correct explanation of STATEMENT-1.
- (C) If STATEMENT-1 is correct and STATEMENT-2 is incorrect.
- (D) If STATEMENT-1 is incorrect and STATEMENT-2 is correct.
- **Q.63 STATEMENT-1:** Electrolysis of CuCl₂(aq) gives 1 mole of Cu and 1 mole of Cl₂ by the passage of suitable charge.

STATEMENT-2: Equal equivalents of Cu and Cl₂ are formed during the passage of same charge.

(1) A (2) B (3) C (4) D

A

Q.64 STATEMENT-1: In an electrochemical cell, anode and cathode are, respectively, negative and positive electrode.

STATEMENT-2: At anode, oxidation takes place and at cathode reduction takes place.

- (1) A (2) B (3) C (4) D
- **Q.65 STATEMENT-1**: In the Daniel cell, if concentrations of Cu^{2+} and Zn^{2+} ions are doubled, the EMF of cell does not change.

STATEMENT-2: If the concentration of ions in contact with the metal is doubled, the electrode potential will be doubled.

- (1) A (2) B (3) C (4) D
- Q.66 STATEMENT-1: KCl, NaCl, NH₄Cl, etc. cannot be used in the salt bridge of a cell containing silver ion.

STATEMENT-2: A salt bridge contains concentrated solution of an inert electrolyte like KCl, KNO₃', K₂SO₄ etc. in agar -agar.

- (1) A (2) B (3) C (4) D
- **Q.67 STATEMENT-1:** The conductivity of solutions of different electrolysis in the same solvent and at a given temperature is same.

STATEMENT-2: The conductivity depends on the charge and size of the ions. The concentrations of ions and ease with which the ions move under potential gradient.

- (1) A (2) B (3) C (4) D
- **Q.68 STATEMENT-1**: A metal having negative reduction potential when dipped in the solution of its own ions has a tendency to pass into the solution.

CHEMISTRY

- **STATEMENT-2**: Metals having negative reduction potentials have large hydration energy.
- (1) A
- (2) B
- (3) C
- (4) D

MORE THAN ONE CORRECT TYPE QUESTIONS

- **Q.69** If the half-cell reaction $A + e^- \longrightarrow A^-$ has a large negative reduction potentials, it follows that:
 - (1) A is readily reduced
 - (2) A is readily oxidised
 - (3) A⁻ is readily reduced
 - (4) A⁻ is readily oxidised
- **Q.70** The oxidation potential of hydrogen half-cell will be negative if:
 - (1) $p(H_2) = 1$ atm and $[H^+] = 1$ M
 - (2) $p(H_2) = 1$ atm and $[H^+] = 2M$
 - (3) $p(H_2) = 0.2$ atm and $[H^+] = 1$ m
 - (4) $p(H_2) = 0.2$ atm and $[H^+] = 0.2M$
- **Q.71** Which of the following arrangement will produce oxygen at anode, during electrolysis?
 - (1) Dilute H₂SO₄ with Pt electrodes
 - (2) Fused NaOH with inert electrodes
 - (3) Dilute H₂SO₄ with Cu electrodes
 - (4) Concentrated aq. NaCl with Pt electrodes
- **Q.72** When a lead storage battery is discharged:
 - (1) SO₂ is evolved
 - (2) Lead sulphate is produced at both electrodes
 - (3) Sulphuric acid is consumed
 - (4) water is formed
- Q.73 For a reaction in a galvanic cell the value of $-\Delta G^{\circ}$ at certain temperature is not necessarily equal to:
 - (1) nFE⁰
- (2) RT In K
- (3) T. $\Delta S^{\circ} \Delta H^{\circ}$
- (4) zero

COMPREHENSION TYPE QUESTIONS

- **Q.74** The standard reduction potential of the $Ag^+|Ag$ electrode at 298 K is 0.80 V. The solubility product of AgCl is 6.4×10^{-17} at 298 K (2.303 RT/F = 0.06, log 2 = 0.3)
- (i) the potential of Ag⁺| Ag electrode in a saturated solution of Agl at 298 K is
 - (1) -0.314 V
- (2) +0.314 V
- (3) -0.172 V
- (4) +0.172 V
- (ii) The standard reduction potential of I⁻|Agl|Ag electrode at 298 K is
 - (1) -0.314 V
- (2) +0.314 V
- (3) -0.172 V
- (4) +0.172 V

- (iii) The potential of I^- (0.04 M) |AgI| Ag electrode at 198 K is
 - (1) -0.088 V
- (2) +0.088 V
- (3) -0.172 V
- (4) +0.172 V
- Q.75 A current of 15.0 A is employed to plate nickel in a NiSO₄ solution. Both Ni and H₂ are formed at the cathode. The current efficiency with respect to formation of Ni is 60%. The density of nickel = 8.9 g/ml. (Ni = 58.7)
- (i) How much of nickel is plated on the cathode per hour?
 - (1) 16.43 g
- (2) 32.85 g
- (3) 19.7 g
- (4) 9.85 g
- (ii) What is the thickness of the planting if the cathode consists of a sheet of metal 4.0 cm², which is to be coated on both sides?
 - (1) 1.38 mm
- (2) 2.76 mm
- (3) 0.69 mm
- (4) 23.0 mm
- (iii) What volume of H₂ at 0°C and 1 atm is formed per hour?
 - (1) 6.27 L (2) 3.76 L (3) 2.5 L (4) 5.01 L
- (iv) At the end of the electrolysis, how many grams of the gaseous product appear at the anode?
 - (1) 4.48 g (3) 2.69 g
- (2) 1.796 g
- (3) 2.69 g
- (4)7.46 g

MATCH THE COLUMN TYPE QUESTIONS

Q.76

200.00						
	Column-I		Column-II			
(A)	Dilute solution	(P)	O ₂ evolved			
	of HCl		at anode			
(B)	Dilute solution	(Q)	H ₂ evolved			
	of NaCl		at cathode			
(C)	Concentrated	(R)	Cl ₂ evolved			
5/15	solution of		at anode			
9	NaCl					
(D)	AgNO ₃ solution	(S)	Ag deposited			
			at cathode			

- (1) $A \rightarrow R$, P; $B \rightarrow S$, Q; $C \rightarrow Q$, R; $D \rightarrow P$, S;
- (2) $A \rightarrow Q$, S; $B \rightarrow Q$, P; $C \rightarrow Q$, R; $D \rightarrow P$, S;
- (3) $A \rightarrow P$, Q; $B \rightarrow P$, Q; $C \rightarrow S$, P; $D \rightarrow Q$, R;
- (4) $A \rightarrow P$, Q; $B \rightarrow P$, Q; $C \rightarrow Q$, R; $D \rightarrow P$, S;
- **Q.77** The standard reduction potential data at 25°C is given below:
 - E° (Fe³⁺,Fe²⁺) = +0.77V
 - E° (Fe²⁺,Fe) = -0.44V
 - E° (Cu²⁺,Cu) = +0.34V
 - E° (Cu⁺, Cu) = +0.52V
 - $E^{\circ} [O_2(g) + 4H^+ + 4e^- \rightarrow 2H_2O] = +1.23V$
 - $E^{\circ}[O_2(g) + 2H_2O + 4e^- \rightarrow 4OH^-] = +0.40V$
 - $E^{\circ}(Cr^{3+}, Cr) = -0.74V$

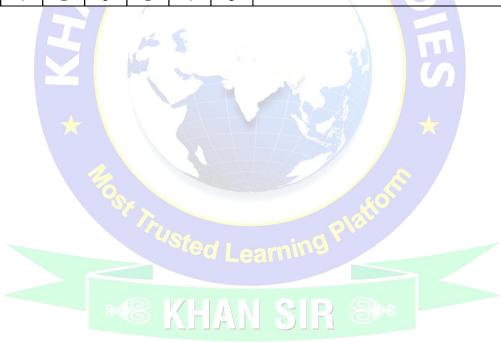
 $E^{\circ}(Cr^{2+},Cr) = -0.91V$

Match E° of the redox pair in Column-I with the

values given in Column-II

,	Column-I		Column-II
(A)	E° (Fe ³⁺ ,Fe)	(P)	-0.70V
(B)	E° (4H ₂ O	(Q)	-0.4V
	\rightarrow 4H ⁺ + 4 OH ⁻)		
(C)	E° (Cu ²⁺ , Cu	(R)	-0.04V
	$\rightarrow 2Cu^+)$		
(D)	E° (Cr ³⁺ , Cr ²⁺)	(S)	-0.83V

- (1) $A \rightarrow P$; $B \rightarrow Q$; $C \rightarrow S$; $D \rightarrow R$;
- (2) $A \rightarrow S$; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow R$;
- (3) $A \rightarrow R$; $B \rightarrow S$; $C \rightarrow P$; $D \rightarrow Q$;



ANSWER KEY

JEE-RANKER'S STUFF

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	1	1	2	4	3	3	2	4	3	2	3	2	3	2	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	2	3	2	3	3	2	3	4	2	3	2	1	3	4	3
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	4	1	1	3	2	3	3	3	2	1	2	4	2	2	4
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	4	4	3	1	3	3	4	1	2	6	6	7	4	3	6
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74(i)	74(ii)
Ans.	5	8	1	1	3	2	4	2	4	2,3	1,2	2,3,4	4	2	3
Que.	74(iii)	75(i)	75(ii)	75(iii)	75(iv)	76	77		-						
Ans.	1	4	1	3	1	4	3								

