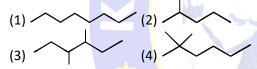
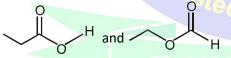
Chapter

02

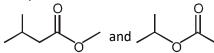
Isomerism



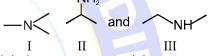
TOPIC WISE QUESTIONS



STRUCTURAL ISOMERISM


- **Q.1** Isomers have essentially identical:
 - (1) Structural formula
 - (2) Chemical properties
 - (3) Molecular formula
 - (4) Physical properties
- **Q.2** Compounds with same molecular formula but different structural formulae are called:
 - (1) Isomers
- (2) Isotopes
- (3) Isobars
- (4) Isoelectric
- Q.3 Which compound is not the isomer of 3-Ethyl-2-methylpentane?

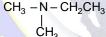
- **Q.4** What is the relation between 3-Ethylpentane and 3-Methylhexane?
 - (1) Chain isomers
- (2) Position isomers
- (3) Functional isomers (4) No relation
- Q.5 Identify the relationship between the given compounds.

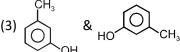


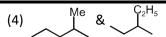
- (1) Chain Isomers
- (2) Functional isomers
- (3) Homologous
- (4) Position Isomers
- **Q.6** Identify the relationship between the given compounds.

- (1) Chain Isomers
- (2) Functional isomers
- (3) Homologus
- (4) Position Isomers
- **Q.7** Identify the relationship among the followings:

- $\begin{array}{c|cccc} OH & O-CH_3 & CH_2-OH \\ \hline O & and & \hline O & III & III \\ \hline \end{array}$
- (1) Chain Isomers
- (2) Functional isomers
- (3) Metamers
- (4) Position Isomers
- Q.8 Identify the relationship among the followings:


- (1) Chain Isomers
- (2) Functional isomers
- (3) Metamers
- (4) Position Isomers
- **Q.9** Identify the relationship among the followings :


- I II (1) Chain Isomers
- III
 (2) Functional isomers
- (3) Metamers
- (4) Position Isomers
- **Q.10** Which of the following pairs are called position isomers:
 - (1) CH₂(OH)CH₂CO₂H & CH₃CH(OH)CO₂H
 - (2) C₂H₅OH & CH₃OCH₃
 - (3) (C₂H₅)₂CO & CH₃CH₂OCH₂CH₂CH₃
 - (4) All the above
- Q.11 & are called as:
 - (1) Position isomers
 - (2) Chain isomers
 - (3) Functional isomers
 - (4) Ring chain isomers
- **Q.12** Possible number of disubstituted benzene isomers are:
 - (1) 1 (2) 2
- (3)3
- (4) 4
- **Q.13** Which of the following are isomers:
 - (1) Ethanol and ethoxy ethane

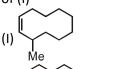

- (2) Methanol and methoxy methane
- (3) Propanoic acid and ethyl acetate
- (4) Propional dehyde and acetone
- **Q.14** Functional isomer of CH₃COOCH₃ is:
 - (1) CH₃CH₂COOH
- (2) HOCH₂-CH₂CHO
- (3) HCOOC₂H₅
- (4) Both (1) & (2)
- Q.15 = & _ are:
 - (1) Chain isomer
- (2) Functional isomer
- (3) Position isomer
- (4) Metamers
- Q.16 CH₃CONH₂ & HCONHCH₃ are called:
 - (1) Position isomer
- (2) Chain isomer
- (3) Metamer
- (4) Functional isomer

- **Q.17** Propene and cyclopropane are:
 - (1) Chain isomers
 - (2) Position isomers
 - (3) Geometrical isomers
 - (4) Ring chain isomers
- Q.18 The number of ether metamers represented by the formula C₄H₁₀O is:
 - (1)4
- (2) 3 (3) 2
- (4)1
- Q.19 Which of the following pairs of compounds are not metamers:
 - (1) CH₃OCH₂CH₂CH₃ and CH₃CH₂OCH₂CH₃
 - (2) CH₃CH₂OCH₂CH₃ and CH₃OCH(CH₃)₂
 - (3) CH₃NHCH₂CH₂CH₃ and CH₃CH₂NHCH₂CH₃
 - (4) CH₃NHCH₂CH₂CH₃ and

- **Q.20** The minimum number of carbon atoms present in an organic compound to show chain isomerism are:
 - (1) 2
- (2)3
- (3)5
- (4)4
- **Q.21** How many chain isomers are possible for C_6H_{14} :
 - (1)5
- (2)4
- (3)3
- (4) 2
- Q.22 How many benzenoid isomeric phenols are possible with the Molecular Formula C₇H₈O:
 - (1)3
- (2)4
- (3)2
- (4)5
- Q.23 The total number of benzene derivatives with the molecular formula C₆H₃Cl₃ is:
 - (1) 2
- (2)3
- (3)4
- (4)5
- Q.24 A pair of position isomers is:

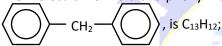
Q.25 Given compounds are

$$\begin{array}{c} \text{CI-CH}_2 \longrightarrow \begin{array}{c} \text{O} \\ \parallel \\ \text{O} \end{array}$$
 and
$$\begin{array}{c} \text{O} \\ \parallel \\ \text{C-O-CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \end{array}$$

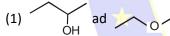

- (1) Chain isomers
- (2) Metamers
- (3) Position isomers
- (4) Ring chain isomers
- Q.26 Which is incorrect match:
 - CN & CN : Position isomers : Functional group isomers
 - OH: Chain isomers
- Q.27 Minimum C-atom required for:
 - (I) Chain isomerism in ether = X
 - (II) Position isomerism in alkanol = Y
 - (III) Functional group isomerism in Alkyne = Z X + Y + Z is:
 - (1) 11
- (2)7
- (3) 10
- (4)9

Q.28

- (1) Functional isomers
- (2) Metamers
- (3) Position isomers
- (4) Chain isomers
- Q.29 Which is not a pair of chain isomers:


 - (3) CH₃-CH₂-CH₂-CH₂-OH, CH₃ CH₂ CH OH ĊΗ₂
 - (4) 2 & 3 both

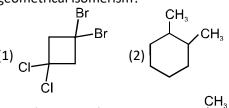
Q.30 Which of the following is/are structural isomers of (I)

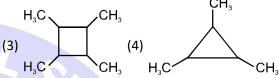

- (III) Me
- (IV)
- (1) II, III, IV
- (2) II, III
- (3) III only
- (4) III, IV
- Q.31 OH and HOH are
 - (1) Homologues
- (2) Chain isomers

- (3) Functional isomers (4) None of these
- Q.32 The molecular formula of diphenylmethane,

How many structural isomers are possible when one of the hydrogen is replaced by a chlorine atom?

- (1)6
- (2)4
- (3) 8
- (4)7
- **Q.33** Which of the following pairs of compounds are functional isomers?




- (2) g and
- (3) OH and
- (4) and
- **Q.34** $CH_3 CH_2 CHO \& CH_2 = CH CH_2OH are:$
 - (1) Functional isomers
 - (2) Chain isomers
 - (3) Position isomers
 - (4) Metamers

STEREO ISOMERISM

- Q.35 Stereoisomers have different:
 - (1) Molecular formula
 - (2) Structural formula
 - (3) Configuration
 - (4) Molecular mass
- **Q.36** Which of the following compounds will not show geometrical isomerism:
 - (1) Azomethane
 - (2) 1-Bromo-2-chloroethene

- (3) 1-Phenylpropene
- (4) 2-Methyl-2-butene
- **Q.37** Which of the following compound cannot show geometrical isomerism?

Q.38 The 'E'-isomer is/are:

(1)
$$CI > C = C < Br$$

$$(2)$$
 H_3C $C = C < CH_2$

(3)
$$H_3C$$
 $C = C C_2H_5$ $CH(CH_3)$

$$(4)$$
 H $C = C$ $COOCH_3$

Q.39 The correct stereochemical formula of Trans-3-chloro-1-phenylbut-1-ene is

 H_3C C = C CH_3

(2)
$$C = C$$
 $CH - CH_3$

$$H_3C \longrightarrow C = C \longrightarrow C_6H_5$$

(4)
$$CH_s$$
 CH_s $CH_$

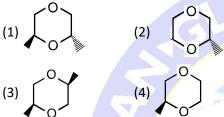
- Q.40 Chiral molecules are:
 - (1) Superimposable on their mirror image
 - (2) Not superimposable on their mirror image
 - (3) unstable molecules
 - (4) capable of showing geometrical isomerism
- **Q.41** The compound which has maximum number of chiral centres is

Q.42 Which of the following compound posses plane of symmetry?

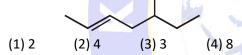
Br
$$CH_3$$
 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5

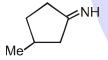
- **Q.43** Which of the following statements is not correct:
 - (1) Enantiomers are essentially chiral and optically active.
 - (2) Diastereomers are not necessarily chiral and optically active.
 - (3) All geometrical isomers are diastereomers.
 - (4) All diastereomers are chiral and optically active.
- Q.44 Which one among the following is not diastereomeric pair.

- (1) I and III
- (2) I and II
- (3) II and III
- (4) I and IV
- Q.45 Which statement is false:
 - (1) When value of dihedral angle is 180° then this conformation is called anti conformation.

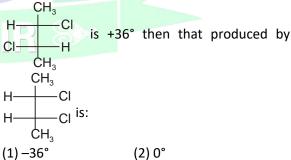

- (2) When $\phi = 60^{\circ}$ then this conformation is called gauche.
- (3) When $\phi = 0^{\circ}$ then this conformation is called eclipsed conformation.
- (4) Other than staggered and eclipsed conformation are called gauche conformations.
- **Q.46** Which of the following is associated with Torsional strain?
 - (1) Repulsion between bond pair of electrons
 - (2) Size of the groups present at adjacent atoms
 - (3) Bond angle strain
 - (4) Attraction of opposite charges
- Q.47 The Baeyer's angle strain is expected to be maximum in
 - (1) Cyclodecane
- (2) Cyclopentane
- (3) Cyclobutane
- (4) Cyclopropane
- Q.48 The true statement about the following corformation is:

- (1) It has maximum angle strain.
- (2) It does not have eclipsing strain (tortional strain).
- (3) It does not have any intramolecular hydrogen bonding.
- (4) It has maximum vander waal strain.
- Q.49 Which of the following can show optical isomerism:
 - (1) 1-Chlorobutane (2) t-Butyl chloride
 - (3) Sec-butyl chloride (4) Iso-butyl chloride
- **Q.50** Number of oximes formed on reaction of the simplest symmetrical ketone and the simplest unsymmetrical ketone with hydroxylamine:
 - (1) 2
- (2)4
- (3)3
- (4) 1
- **Q.51** Which of the following compound can show geometrical isomerism:
 - (1) $(CH_3)_2C = CH C_2H_5$
 - (2) $H_2C = CBr_2$
 - (3) $C_6H_5 CH = CH CH_3$
 - (4) $CH_3 CH = CCI_2$
- **Q.52** Which of the following is not true regarding hex-2-ene:


- (1) Boiling point of cis is higher than trans
- (2) Trans isomer has zero dipole moment
- (3) Trans is more stable than c is
- (4) Can show position isomerism
- Q.53 Which of the following compound can show optical isomerism:


Q.54 Which of the following compound is achiral:

Q.55 How many stereoisomers are possible for the given compound:


Q.56 Given compound can show:

- (1) Geometrical isomerism
- (2) Optical isomerism
- (3) Geometrical and optical isomerism both
- (4) None
- Q.57 But-2-ene exhibits cis-trans isomerism due to:
 - (1) Rotation around C₃-C₄ sigma bond
 - (2) Restricted rotation around C=C bond
 - (3) Rotation around C_1 – C_2 bond
 - (4) Rotation around C₂–C= double bond
- Q.58 The number of geometrical isomers of CH₃CH = CH-CH = CH-CH = CHCl are: (1) 2(2)4
- $CH_3 C CI$ has the configuration: CI C Br
 - (1) Trans
- (2)Z
- (3) E
- (4) Both (1) & (2)

- Q.60 Which of the following will show geometrical isomerism:
 - (1) 1-Butene
 - (2) 1, 2-Dibromoethene
 - (3) Propene
 - (4) Isobutylene
- Q.61 How many asymmetric carbon atoms are present in:
 - (i) 1, 2-dimethyl cyclohexane
 - (ii) 3-methyl cyclopentene
 - (iii) 3-methyl cyclohexene
 - (1) Two, one, one
- (2) One, one, one
- (3) Two, none, two
- (4) Two, none, one
- Q.62 Stereo isomers but not mirror images are called:
 - (1) Enantiomers
- (2) Mesomers
- (3) Tautomers
- (4) Diastereomers
- Q.63 The number of optically active isomers possible CH₃ - CH - CH - CH - CH₂OH in are:
 - он он он (1) 2
 - (2)4
- (3)6
- (4)8
- Q.64 Which of the following contain chiral carbon

- (4) All the above
- Q.65 If optical rotation produced by

- $(3) + 36^{\circ}$
- (4) Unpredictable
- Q.66 Number of optically active isomers of tartaric acid is:
 - (1) 3
- (2)1
- (3)4
- (4)5
- Q.67 Meso form of tartaric acid is:

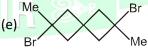
- (1) Dextorotatory
- (2) Laevorotatory
- (3) Neither Leavo nor dextro rotatory due to internal compensation
- (4) A mixture of equal quantities of dextro and leavo rotatory forms
- **Q.68** Molecular formulae of an optically active organic compound is C₄H₁₀O. Its structure is:
 - (1) $C_2H_5OC_2H_5$
 - (2) CH₃OC₃H₇
 - (3) CH₃CH₂CH₂CH₂OH
 - (4) CH₃CH(OH)CH₂CH₃
- **Q.69** $CH_3 CH_2 CH_2 CH_3$. There is free rotation about $(C_2 - C_3)$ bond. The same most stable form is repeated after rotation of:
 - (1) 60°
- (2) 120°
- (3) 240°
- (4) 360°
- Q.70 The eclipsed and staggered conformation of ethane is due to:
 - (1) Free rotation about C-C single bond
 - (2) Restricted rotation about C-C single bond
 - (3) Absence of rotation about C-C bond
 - (4) None of the above
- Q.71 Dihedral angle require to get maximum stable conformer from minimum stable conformer in nbutane is:
 - (1) 360°
- (2) 180° (3) 120°
- (4) 240°
- Q.72 The number of isomers for the compound with molecular formula C2BrClFI is:
 - (1)3
- (2)4
- (3)5
- (4)6
- Q.73 Which of the following does not contain any asymmetric carbon but can show enantiomerism:
 - (1) Lactic acid
- (2) 1, 3-pentadiene
- (3) Tartaric acid
- (4) 2, 3-pentadiene

Compound I and II are:

- (1) Diastereomers
- (2) Identical
- (3) Mesomers
- (4) Enantiomers
- **Q.75** The number of stereo isomers possible for the compound with the structure is:

$$CH_3CH = CH-CH = CH-CH_2-CH-CH_3$$

- (1) 2
- (2)4
- (3)6
- (4) 8
- Q.76 Which of the following will show geometrical isomerism:
 - (1) $CH_3CH = CH_2$

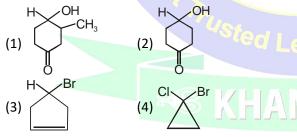

(2)
$$CH_3 - C = C - CH_2CH_3$$

- (3) $CH_3CH_2CH_2CH = CH_2$
- (4) $CH_2 = CH CH_2 CH_3$
- Q.77 How many optically active isomers are possible for a compound of given formula:

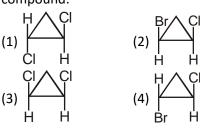
CH2OH· CHOH· CHOH· CH2OH

- (1) 2
- (2)3
- (3)4
- (4)8
- Q.78 In trans-1, 2-dichloroethene:
 - (1) There are 6 sigma bonds
 - (2) There is free rotation about the C-C bond
 - (3) All the atoms lie in the same plane
 - (4) All the above
- **Q.79** Which is optically inactive compound:

(c)
$$F C = C$$
 Br


- (1) b, c, d
- (2) a, b, d, e
- (3) a, b, c, d
- (4) Only e
- **Q.80** Which compound would exhibit optical isomers:

(3) | COOH (4) COOH


Q.81 In plane clockwise rotation of the projection formula (A) of a compound by 90° and 180° yields the projection formulae (B) and (C) respectively:

Which of the following statements is not correct about (A), (B) and (C):

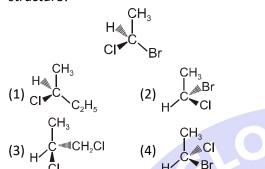
- (1) A and B are enantiomers
- (2) A and C are identical
- (3) B and C are enantiomers
- (4) A and C are enantiomers
- **Q.82** Which of the following compounds possesses chiral centre:

Q.83 Which of the following compounds is a meso compound:

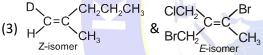
Q.84 Which of the following structures represents a threo-stereoisomer:

$$CH_3$$
 CH_3 Br CH_3 Br CH_3 Br CH_3 CH_3

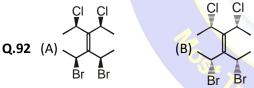
- Q.85 How many meso stereoisomers are possible for 2, 3, 4-pentanetriol:
 - (1) 1 (2) 2 (3) 3 (4) None
- **Q.86** Among the following compounds, the one which can exhibit geometrical isomerism is:
 - (1) 1, 3-butadiene (2) 1, 2-butadiene
 - (3) 1, 3-pentadiene (4) 1, 4-pentadiene
- Q.87 The total number of secondary alcohols (including stereoisomers) possible having the molecular formula $C_5H_{12}O$ is:
 - (1) 3 (2) 4 (3) 5 (4) 6
- Q.88 The correct IUPAC name of


- (1) 7-bromo-2Z, 5E-heptadiene
- (2) 1-bromo-2Z, 5E-heptadiene
- (3) 1-bromo-2Z, 5Z-heptadiene
- (4) 1-bromo-2E, 5Z-heptadiene
- Q.89 The interchange of two groups (Br and CH₃) at the chiral centre of the projection formula (I) yields the formula (II), while the interchange of another set of two groups (C₂H₅ and Cl) of (I) yields the projection formula (III).

$$\begin{array}{c} CH_3 \\ I. CI \xrightarrow{\hspace{1cm}} Br \\ C_2H_5 \\ C_2H_5 \\ III. C_2H_5 \\ III. C_2H_5 \\ III. C_2H_5 \\ III. C_3H_5 \\ III. C_2H_5 \\ III. C_3H_5 \\ III.$$


Which of the following statements is not correct about the structures (I), (II) and (III):

(1) (II) and (III) are identical


- (2) (I) and (III) are enantiomers
- (3) (II) and (III) are enantiomers
- (4) (I) and (II) are enantiomers
- **Q.90** Which of the following is the enantiomer of the structure?

- Q.91 In which of the following pair of compound shows correct configuration:
 - (1) Ph N=N Ph & Ph N=N Ph anti-azobenzene
 - (2) $\stackrel{\text{CH}_3}{\text{H}} > \text{C=N} \stackrel{\text{OH}}{\text{OH}} & \stackrel{\text{CH}_3}{\text{H}} > \text{C=N} \stackrel{\text{OH}}{\text{OH}}$ syn-acetaldoxime

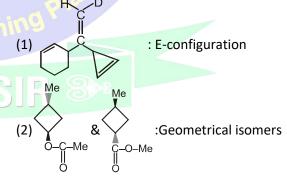
(4) All of these

Relationship between above pair (A) & (B) is:

- (1) Enantiomers
- (2) Diastereomers
- (3) Identical
- (4) Structural isomers
- **Q.93** Correct statement is:
 - (1) Isomers have same molecular formula but different structural formula
 - (2) Isomers have same physical but different chemical properties.
 - (3) Stereoisomers belong to same homologous series.
 - (4) All
- Q.94 Which of the following can show geometrical isomerism:

(4) All

Q.95 Which of the following is true for aerial distances 1 and 2:


- (1) $\ell_1 > \ell_2$
- (3) $\ell_1 = \ell_2$
- (4) Cannot be compared
- Q.96 Number of geometrical isomers possible for the compound:

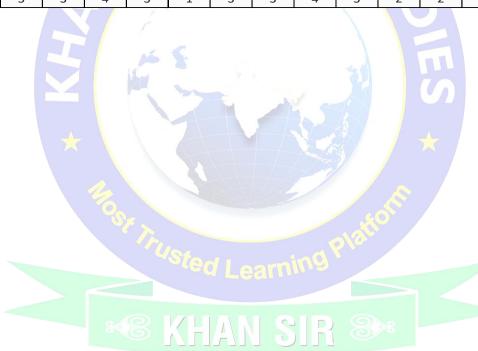
- (1)4
- (2)3

- **Q.97** Which is incorrect statement:

- (1) I has Z configuration
- (2) II has E configuration
- (3) I & II are geometrical isomers of each other
- (4) None
- **Q.98** Which of the following can have meso isomer:
 - (1) 3-chloro-2, 4-dimethylpentane
 - (2) Pentane-2, 3-diol
 - (3) Cyclopentane-1, 2-diamine
 - (4) 2-Chlorobutane
- Q.99 Which is incorrect match:

- (3) Total alkene with M.F. C₄H₈: 3
- (4) All
- Q.100 How many geometrical isomers are possible with the molecular formula C₅H₁₀ in cyclic form:
 - (1) 10
- (2) 2
- (3)4
- (4)6

- **Q.101** Number of structural isomeric aldehyde and ketones possible with the M.F. C₅H₁₀O, which on reaction with hydroxyl amine give two oximes:
 - (1) 4
- (2)7
- (3)6
- (4) 5
- **Q.102** An alcohol, an aldehyde and a carboxylic acid of comparable mass will have their boiling points in the order:
 - (1) Alcohol < Aldehyde < Carboxylic acid
 - (2) Aldehyde < Alcohol < Carboxylic acid
 - (3) Alcohol < Carboxylic acid < Aldehyde
 - (4) Carboxylic acid < Aldehyde < Alcohol
- **Q.103** How many cyclic geometrical isomers are possible with the M.F. C₆H₁₂:
 - (1)4
- (2)6
- (3)8
- (4) 10


- **Q.104**The decreasing order of boiling points of the following is:
 - I. RCOCI
- II. (RCO)₂O
- III. RCONH₂
- IV. RCOOR
- (1) I > IV > II > III
- (2) III > II > IV > I
- (3) IV > III > I > III
- (4) || > | > ||| > |V

ANSWER KEY

TOPIC WISE QUESTIONS

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	1	2	1	2	3	2	2	4	1	1	3	4	4	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	4	4	2	4	4	1	1	2	4	2	4	1	1	4	3
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	4	2	2	1	3	4	1	4	4	2	3	3	4	1	4
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	1	4	2	3	3	3	2	1	2	2	3	2	4	4	2
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	1	4	4	4	2	1	3	4	4	1	2	4	4	1	4
Que.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans.	2	1	3	3	1	4	1	3	3	2	3	3	4	3	4
Que.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	
Ans.	4	3	3	4	3	1	3	3	4	3	2	2	3	2	

