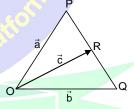
Chapter

01

Basic Mathematics

NEET-RANKER'S STUFF

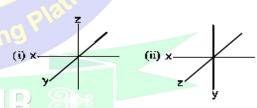


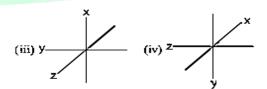
- Q.1 The resultant of \vec{A} & \vec{B} is \vec{R}_1 . On reversing the vector \vec{B} , the resultant becomes \vec{R}_2 . What is the value of $R_1^2 + R_2^2$?
 - (1) $A^2 + B^2$
- (2) $A^2 B^2$
- $(3) 2(A^2 + B^2)$
- $(4) 2(A^2 B^2)$
- Q.2 Statement-1: If the rectangular components of a force are 8 N and 6N, then the magnitude of the force is 10N.

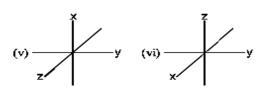
Statement-2: If $|\vec{A}| = |\vec{B}| = 1$ then $|\vec{A} \times \vec{B}|^2 + |\vec{A} \cdot \vec{B}|^2 = 1$.

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True
- Q.3 Given that P = Q = R. If $\vec{P} + \vec{Q} = \vec{R}$ then the angle between $\vec{P} \& \vec{R}$ is θ_1 . If $\vec{P} + \vec{Q} + \vec{R} = 0$ then the angle between $\vec{P} \& \vec{R}$ is θ_2 . What is the relation between θ_1 and θ_2 :
 - (1) $\theta_1 = \theta_2$
- (2) $\theta_1 = \frac{\theta_2}{2}$
- (3) $\theta_1 = 2\theta_2$
- (4) None of the above
- Q.4 Given that $\vec{A} + \vec{B} + \vec{C} = 0$. Out of these three vectors two are equal in magnitude and the magnitude of the third vector is $\sqrt{2}$ times as that of either of the two having equal magnitude. Then the angles between vectors are given by:
 - (1) 30°, 60°, 90°
- (2) 45°, 45°, 90°
- (3) 45°, 60°, 90°
- (4) 90°, 135°, 135°
- **Q.5** $\cos 2\theta + 2 \cos \theta$ is always-

- (1) greater than $-\frac{3}{2}$
- (2) less than or equal to $\frac{3}{2}$
- (3) greater than or equal to $-\frac{3}{2}$
- (4) None of these
- **Q.6** A vector of length ℓ is turned through the angle θ about its tail. What is the change in the position vector of its head ?
 - (1) $\ell \cos(\theta/2)$
- (2) $2\ell \sin(\theta/2)$
- (3) $2\ell \cos (\theta/2)$
- (4) $\ell \sin(\theta/2)$
- Q.7 Figure shown the vectors \vec{a} , \vec{b} and \vec{c} where \vec{R} is the mid point of PQ. Then which of the following is correct?


- (1) $\vec{a} + \vec{b} = 2\vec{c}$
- (2) $\vec{a} + \vec{b} = \vec{c}$
- (3) $\vec{a} \vec{b} = 2\vec{c}$
- (4) $\vec{a} \vec{b} = \vec{c}$
- **Q.8** Acceleration of a particle in a magnetic field is given by $\vec{a} = \frac{q}{m} (\vec{V} \times \vec{B})$ if a charged particle is projected in a magnetic field $(2\hat{i} + 2\hat{j} + 2\hat{k})$ tesla, then acceleration of the particle at an instant is $(x\hat{i} + 2\hat{j} 6\hat{k})$ m/s². value of x is
 - (1)4
- (2) 2
- (3) 3
- (4) 1
- **Q.9** The sign of the product sin 2 sin 3 sin 5 is -
 - (1) Negative
- (2) Positive
- (3)0
- (4) None of these


- **Q.10** If $\vec{a} = 2\hat{i} + \sqrt{5}\hat{j}$ and $\vec{b} = 5\hat{i} + \sqrt{5}\hat{j} + 4\hat{k}$, then find a vector of same magnitude of vector a and parallel to $\vec{a} - \vec{b}$
 - (1) $\frac{7\hat{i} + 2\sqrt{5}\hat{j} + 4\hat{k}}{3}$ (2) $-3\hat{i} 4\hat{k}$
 - (3) $\frac{-9\hat{i}-12\hat{k}}{5}$ (4) $-9\hat{i}+12\hat{k}$
- Q.11 The distance of a point (2, 1) from the line 2x + y + 3 = 0 is -
 - $(1) \frac{8}{5}$


- (4) None of these
- Q.12 Which of the following is correct-
 - (1) sin 1° > sin 1
- (2) sin1° < sin 1
- (3) $\sin 1^\circ = \sin 1$ (4) $\sin 1^\circ = \frac{\pi}{180} \sin 1$
- Q.13 Statement-1: The minimum number of nonzero vectors of unequal magnitude required to produce zero resultant is three.
 - Statement-2: Three vectors of unequal magnitude which can be represented by the three sides of a triangle taken in order, produce zero resultant.
 - (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
 - (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
 - (3) Statement-1 is True, Statement-2 is False
 - (4) Statement-1 is False, Statement-2 is True
- **Q.14** $| \vec{A} \times \vec{B} |^2 + (\vec{A} \cdot \vec{B})^2 =$
 - (1) Zero (2) A^2B^2 (3) AB
- (4) √AB
- Q.15 The displacement vector of a particle is given as $\vec{S} = (t^2 - 2t + 12)\hat{i} + t^2\hat{j}$. The time after which velocity vector and acceleration vector becomes perpendicular to each other is equal to (1) 1(2) 1/2(3) 1/3(4) 1/4
- **Q.16** If \vec{A} and \vec{B} are the components of \vec{C} , then:

- (1) B = C $\frac{\sqrt{3}}{2}$
- (2) A = $\frac{C}{\sqrt{2}}$
- (3) B = $\frac{C}{\sqrt{2}}$
- (4) A = $\frac{\sqrt{3}C}{2}$
- Q.17 A sail boat sails 2 km due East 5 km 37° South of East and finally an unknown displacement. If the final displacement of the boat from the starting point is 6 km due East, determine the third displacement.
 - (1) 3 km, North
- (2) 4 km, South
- (3) 5 km, East
- (4) 3 km, West
- **Q.18** A vector $OA = 3\hat{i}$ is rotated by an angle θ about its starting point O in x-z plane in clockwise sense, as seen by an observer located at a point on +y -axis. The new vector will be:
 - (1) $3 \cos \theta \hat{i} + 3 \sin \theta \hat{i}$ (2) $3 [\cos \theta \hat{i} + \sin \theta \hat{k}]$
 - (3) $3[\cos\theta \hat{i} \sin\theta \hat{k}]$ (4) $3[\sin\theta \hat{i} + 3\cos\theta \hat{k}]$
- Q.19 Which of the arrangement of axes in fig. can be labelled "right handed coordinate system"? As usual, each axis lable indicates the positive side of the axis.

PHYSICS

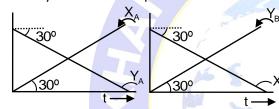
(1) (i), (ii), (iii), (v) only (2) (i), (iii), (iv) only

(3) (i), (ii) (iii) (iv) & (vi) (4) none of these

Q.20 There are three vectors \vec{P} , \vec{Q} , and \vec{R} . The angle between \vec{P} and \vec{Q} is 60° and \vec{R} is perpendicular to the plane containing the vectors \vec{P} and \vec{Q} . Consider the following relations.

(a)
$$\vec{P} + \vec{Q} + \vec{R} = 0$$

(b)
$$\vec{P} \times \vec{Q} = \vec{R}$$


(c)
$$\vec{P} \times \vec{R} = \vec{Q}$$

The possible relations are

(1) (a) & (b)

(3) (b) & (c)

Q.21 Displacement versus time plot for two particles A and B is shown below. X_A X_B and Y_A Y_B refer to x and y coordinates of particles A and B.

Velocity of particle A with respect to particle B is

(1) $0\hat{i} + 0\hat{j}$

(2) Dependent of time t

(3)
$$\frac{2}{\sqrt{3}}\hat{i} - \frac{2}{\sqrt{3}}\hat{j}$$
 (4) $-\frac{2}{\sqrt{3}}\hat{i} + \frac{2}{\sqrt{3}}\hat{j}$

- **Q.22** A body moving with a constant speed describes a circular path whose radius vector is given by $\vec{r} = 15$ (cos ptî + sin ptĵ) m, where p is in rad/s, and t is in second. What is its centripetal acceleration at t = 3 s? $[a_{centripetal} = v^2/r]$
 - $(1) 45p^2 m/s^2$
- $(2) 5p^2 m/s^2$
- (3) $15p \text{ m/s}^2$
- $(4) 15p^2 m/s^2$
- Q.23 If a denotes a unit vector along an incident light b a unit vector along refracted ray into a medium having refractive index 'µ' (relative to first medium and \vec{c} is a unit vector normal to boundary of two media and directed towards first medium, then law of refraction is [$\sin \theta_1$ = $\mu \sin \theta_2$

 - (1) $\vec{a}.\vec{c} = \mu(\vec{b}.\vec{c})$ (2) $\vec{a} \times \vec{c} = \mu(\vec{c} \times \vec{b})$

 - (3) $\vec{a} \times \vec{c} = \mu(\vec{b} \times \vec{c})$ (4) $\mu(\vec{a} \times \vec{c}) = (\vec{b} \times \vec{c})$
- Q.24 A ladder 10 m long rests against a vertical wall with the lower end on the horizontal ground.

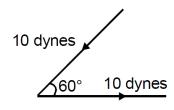
The lower end of the ladder is pulled along the ground away from the wall at the rate of 3 cm/sec. The height of the upper end while it is descending at the rate of 4 cm/sec. is [velocity along the rod is constant]

- (1) $4\sqrt{3}$ m
- (2) 6 m
- (3) $5\sqrt{2}$ m
- (4) 8 m
- Q.25 100 coplanar forces each equal to 10 N act on a body. Each force makes angle $\frac{\pi}{50}$ with the preceding force. What is the resultant of the forces
 - (1) 1000 N
- (2) 500 N
- (3) 250 N

- (4) Zero
- Q.26 Find the resultant of three vectors OA, OB and OC shown in the following figure. Radius of the circle is R.

- (1) 2R
- (2) R(1 + $\sqrt{2}$)
- (3) R√2
- (4) $R(\sqrt{2}-1)$
- Q.27 The sum of two forces acting at a point is 16 N. If the resultant force is 8N and its direction is perpendicular to smaller force then the forces are
 - (1) 6 N and 10 N
- (2) 8 N and 8N
- (3) 4 N and 12 N
- (4) 2N and 14 N
- Q.28 The sum of the magnitudes of two forces acting at point is 18 and the magnitude of their resultant is 12. If the resultant is at 90° with the force of smaller magnitude, what are the magnitudes of forces?
 - (1) 12, 5
- (2) 14, 4
- (3) 5, 13
- (4) 10, 8
- Q.29 Three forces P, Q and R are acting on a particle in the plane, the angle between P and Q & Q and R are 150° and 120° respectively. Then for equilibrium, forces P, Q and R are in the ratio:
 - (1)1:2:3
- (2) 1 : 2 : $\sqrt{3}$
- (3) 3 : 2 : 1
- $(4) \sqrt{3} : 2:1$
- Q.30 Following forces start acting on a particle at rest at the origin of the co-ordinate system simultaneously

PHYSICS


 $\vec{F}_1 = -4\hat{i} - 5\hat{j} + 5\hat{k} \; , \qquad \vec{F}_2 = -5\hat{i} + 8\hat{j} + 6\hat{k} \; ,$

 $\vec{F}_3 = -3\hat{i} + 4\hat{j} - 7\hat{k}$ then the particle will move

- (1) In x-y plane
- (2) In y-z plane
- (3) In x-z plane
- (4) Along x-axis
- Q.31 A body is at rest under the action of three forces two of which are $\vec{F}_1 = 4\hat{i}$, $\vec{F}_2 = 6\hat{j}$, the third force is
 - (1) $4\hat{i} + 6\hat{j}$
- (2) 4î 6î
- $(3) -4\hat{i} + 6\hat{i}$
- $(4) -4\hat{i} -6\hat{i}$
- Q.32 The vector that must be added to the vector $\hat{i} - 3\hat{i} + 2\hat{k}$ and $3\hat{i} + 6\hat{j} - 7\hat{k}$ so that the resultant vector is a unit vector along the y-axis is
 - (1) $4\hat{i} + 2\hat{j} + 5\hat{k}$
- (2) $-4\hat{i} 2\hat{j} + 5\hat{k}$
- (3) $3\hat{i} + 4\hat{i} + 5\hat{k}$
- (4) Null vector
- Q.33 The unit vector parallel to the resultant of the vectors $\vec{A} = 4\hat{i} + 3\hat{j} + 6\hat{k}$ and $\vec{B} = -\hat{i} + 3\hat{j} - 8\hat{k}$ is
 - (1) $\frac{1}{7}(3\hat{i}+6\hat{j}-2\hat{k})$ (2) $\frac{1}{7}(3\hat{i}+6\hat{j}+2\hat{k})$
 - (3) $\frac{1}{49}(3\hat{i}+6\hat{j}-2\hat{k})$ (4) $\frac{1}{49}(3\hat{i}-6\hat{j}+2\hat{k})$
- **Q.34** Let $\vec{A} = \hat{i}A\cos\theta + \hat{j}A\sin\theta$ be any vector. Another vector **B** which is normal to A is

 - (1) $\hat{i}B\cos\theta + \hat{j}B\sin\theta$ (2) $\hat{i}B\sin\theta + \hat{j}B\cos\theta$

 - (3) $\hat{i}B\sin\theta \hat{j}B\cos\theta$ (4) $\hat{i}B\cos\theta \hat{j}B\sin\theta$
- Q.35 The angle subtended at the centre of the circle of diameter 50 cm by an arc of 11 cm, is (in degree)
 - (1) 22° 10 '
- (2) 23° 10 '
- (3) 20° 12 '
- (4) 25° 12 '
- **Q.36** A bird moves from point (1, -2, 3) to (4, 2, 3). If the speed of the bird is 10m/sec, then the velocity vector of the bird is
 - (1) $5(\hat{i}-2\hat{j}+3\hat{k})$
- (2) $5(4\hat{i}+2\hat{j}+3\hat{k})$
- (3) $5(0.6\hat{i} + 0.8\hat{j})$
- $(4) 6\hat{i} + 8\hat{i}$
- Q.37 Two forces each numerically equal to 10 dynes are acting as shown in the following figure, then their resultant is -

- (1) 10 dynes
- (2) 20 dynes

- (3) $10\sqrt{3}$ dynes
- (4) 5 dynes
- **Q.38** $[(\hat{i} \times \hat{j}) \times (\hat{i} \times \hat{k})]$. \hat{j} equals to?
 - (1)0

and

- (2) 1
- (3) -1(4)2

Each of the following contains two statements. Read the statements and choose any one of the following four responses:

- (A) Assertion is True, Reason is True; Reason is a correct explanation for Assertion.
- (B) Assertion is True, Reason is True; Reason is NOT a correct explanation for Assertion
- (C) Assertion is True, Reason is False
- (D) Assertion is False, Reason is True
- Q.39 Assertion: cos10° & cos(-10)° both are positive & have same value

Reason: $\cos\theta = \cos(-\theta) \& 10^{\circ} \& (-10)^{\circ}$ both lie in IIIrd quadrant.

- (1) A
- (2) B
- (3) C
- (4) D
- Q.40 Assertion: The minimum number of non-zero vectors of unequal magnitude required to produce zero resultant is three.

Reason: Three vectors of unequal magnitude which can be represented by the three sides of a triangle taken in order, produce zero resultant.

- (1) A (2) B
- (3) C
- (4) D
- **Q.41** Assertion: If three vectors \vec{A} , \vec{B} and \vec{C} satisfy the relation $\vec{A} \cdot \vec{B} = 0 \& \vec{A} \cdot \vec{C} = 0$ then the vector \vec{A} is parallel to $\vec{B} \times \vec{C}$.

Reason: $\vec{A} \perp \vec{B}$ and $\vec{A} \perp \vec{C}$ and $\vec{B} \times \vec{C} \neq 0$ hence \vec{A} is perpendicular to plane formed by \vec{B} and \vec{C} .

- (1) A
- (2) B
- (3) C
- (4) D
- Q.42 Assertion: If the rectangular components of a force are 8 N and 6N, then the magnitude of the force is 10N.

Reason: If $|\vec{A}| = |\vec{B}| = 1$ then $|\vec{A} \times \vec{B}|^2 + |\vec{A} \cdot \vec{B}|^2 = 1$

- (1) A
- (2) B
- (3) C
- (4) D

Q.43

	Column-I	Column-II				
(1)	The maximum	(P)	$-\sqrt{2}$			
	value of 12 $\sin\theta$ – 9					
	$\sin^2\theta$ is					
(2)	Maximum value	(Q)	$4 - \sqrt{10}$			
	of $5 \sin^2 \theta + 4 \cos^2 \theta$					
	θ					
(3)	The minimum	(R)	4			
	value of $\cos \theta - \sin \theta$					
	θ is					
(4)	The least value of	(S)	5			
	$\cos^2\theta - 6\sin\theta\cos$					
	θ + 3 sin ² θ + 2 is					
	attained at θ =					

- (1) $1 \rightarrow R$, $2 \rightarrow S$, $3 \rightarrow P$, $4 \rightarrow Q$
- (2) $2 \rightarrow R$, $2 \rightarrow S$, $1 \rightarrow P$, $4 \rightarrow Q$
- (3) $1 \rightarrow R$, $4 \rightarrow S$, $3 \rightarrow P$, $2 \rightarrow Q$
- $(4) 4 \rightarrow R, 2 \rightarrow S, 3 \rightarrow P, 1 \rightarrow Q$

ANSWER KEY

NEET-RANKER'S STUFF

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	2	2	4	3	2	1	1	1	3	3	2	1	2	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	1	1	3	3	4	3	4	3	2	4	2	1	3	4	2
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43		
Ans.	4	2	1	3	4	4	1	1	3	1	4	2	1		

