Chapter

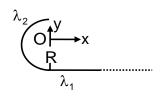
Electrostatics

Practice Section-01

- When a piece of a material is rubbed with another material, mass of 9.1×10^{-20} kg is reduced from one **Q.1** material. Calculate the number of electrons gained by the another material.
 - $(1)\ 10^{10}$
- $(2)\ 10^{13}$
- $(4)\ 10^{11}$
- Two point charges +9q and +q are kept 16 cm apart. Where should a third charge Q be placed between them so that the system remains in equilibrium?
 - (1) 24 cm from + 9q
- (2) 12 cm from + 9q (3) 24 cm from + q
- (4) 12 cm from + q
- A charge Q is divided in two parts Q₁ and Q₂ and these charges are placed at a distance R. There will be Q.3 maximum repulsion between them when:-
- (1) $Q_1 = Q q$; $Q_2 = q$ (2) $Q_1 = \frac{2Q}{3}$, $Q_2 = \frac{Q}{3}$ (3) $Q_1 = \frac{3Q}{4}$, $Q_2 = \frac{Q}{4}$ (4) $Q_1 = Q_2 = \frac{Q}{2}$
- An uncharged sphere of metal is placed in between two charged plates as shown. The lines of force look like

(1) A(2) B

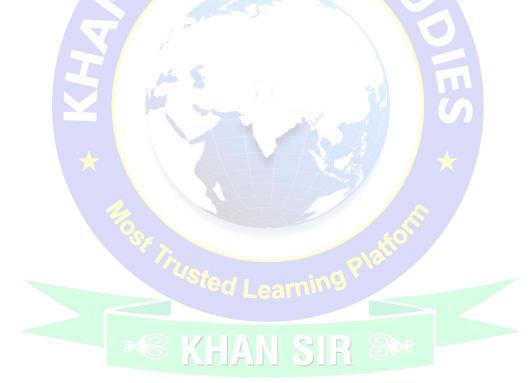
(3) C



(4) D

- Two charges +5µC and +10µC are placed 20 cm apart. The net electric field at the mid-Point between the two charges is:
 - (1) 4.5×10^6 N/C directed towards + 5μ C
- (2) 4.5×10^6 N/C directed towards $+10\mu$ C
- (3) 13.5×10^6 N/C directed towards $+5\mu$ C
- (4) 13.5×10^6 N/C directed towards $+10\mu$ C
- Two point charges +8q and -2q are located at x=0 and x=L respectively. The location of a point on the xaxis at which the net electric field due to these two point charges is zero is:
 - (1) 8L

- (2) 4L
- (3) 2L
- $(4) \frac{L}{4}$
- A semicircular ring of radius 0.5 m is uniformly charged with a total charge of 1.4×10^{-9} C. The electric field 0.7 intensity at the centre of this ring is:-
 - (1) zero
- (2) 320 V/m.
- (3) 64 V/m.
- (4) 32 V/m.


Q.8 In the figure shown, find the ratio of the linear charge densities λ_1 (on semi-infinite straight wire) and λ_2 (on semi-circular part) that is, λ_1/λ_2 so that the field at O is along y direction.

(1)2

- (2) 1.5
- (3) 3

- (4) 2.5
- -1×10^{-6} C charge is on a drop of water having mass 10^{-6} kg. What electric field should be applied on the **Q.9** drop so that it is in the balanced condition with its weight?
 - (1) 10 V/m upward
- (2) 10 V/m downward (3) 0.1 V/m downward (4) 0.1 V/m upward
- Q.10 Two point charges $+3\mu$ C and $+8\mu$ C are repel each other by force of 10 N. If a charge of -5μ C is added to each of them and the distance become half then what will be the force between them would?
 - (1) -10 N
- (2) -20 N
- (3) 5 N
- (4) 10 N

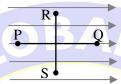
Practice Section-02

Q.1 Gauss's law is valid for

(1)	Any	closed	surface

(2) Only regular close surfaces

(3) Any open surface


(4) Only irregular open surfaces

Q.2The total electric flux through a cube when a charge 8q is placed at one corner of the cube is

(1) $\varepsilon_0 q$

(3) $4\pi\epsilon_0 q$

0.3 The points resembling equal potentials are

(1) P and Q

(2) S and Q

(3) S and R

(4) P and R

Q.4 Two charged spheres of radi R₁ and R₂ having equal surface charge density. The radio of their potential is

 $(1) R_1/R_2$

 $(2) R_2/R_1$

 $(3) (R_1/R_2)^2$

 $(4) (R_2/R_1)^2$

Q.5 A cylinder of length L and radius b has its axis coincident with the x-axis. The electric field in this region is $\vec{E} = 200$ î. Find the flux through the left end of the cylinder.

(1) 0

(2) $200 \text{ } \pi \text{b}^2$

(3) $100 \text{ }\pi\text{b}^2$

 $(4) -200 \pi b^2$

Q.6 The potential of an electric field $\vec{E} = (y\hat{i} + x\hat{j})$ is

(1) V = -xy + constant

(2) V = -(x + y) + constant

(3) $V = -(x^2 + y^2) + constant$

(4) V = constant

A hollow metal sphere of radius 5 cm is charged so that the potential on its surface is 10 V. The potential at the centre of the sphere is

(1) 0 V

(2) 10 V

(3) Same as at point 5 cm away from the surface (4) Same as at point 25 cm away from the surface

A charge of 5 C experiences a force of 5000 N when it is kept in a uniform electric field. What is the potential difference between two points separated by a distance of 1 cm

(1) 10 V

(2) 250 V

(3) 1000 V

(4) 2500 V

0.9 If a charged spherical conductor of radius 10 cm has potential V at a point distant 5 cm from its centre, then the potential at a point distant 15 cm from the centre will be

 $(1) \frac{1}{2} V$

Q.10 If a unit positive charge is taken from one point to another over an equipotential surface, then work done on the charge is:

(1) Positive

(2) Negative

(3) Zero

(4) Constant

Practice Section-03

Q.1 The angle between the dipole moment and electric field at any point on the equatorial plane is

(1)90

 $(2) 45^{\circ}$

 $(3) 0^{\circ}$

 $(4) 180^{\circ}$

Q.2 An electric dipole is kept in non-uniform electric field. It experiences

(1) A force and a torque

(2) A force but not a torque

(3) A torque but not a force

(4) Neither a force nor a torque

Q.3 Three charges of (+4Q), (-3Q) and (-Q) are placed at the corners A, B and C of an equilateral triangle of side a as shown in the adjoining figure. Then the dipole moment of this combination is

(1) $\frac{Qa}{\sqrt{13}}$

(2) zero

(3) $Qa\sqrt{13}$

(4) $\frac{2}{\sqrt{13}}$ Qa

Q.4 An electrical dipole of moment 'p' is placed in an electric field of intensity 'E'. The dipole acquired a position such that the axis of the dipole makes an angle θ with the direction of the field. Assuming the potential energy of the dipole to be zero when $\theta = 90^{\circ}$, the torque and the potential energy of the dipole will respectively be:

(1) pE $\sin\theta$, 2pE $\cos\theta$

(2) pE $\cos\theta$, -pE $\sin\theta$

(3) pE $\sin\theta$, -pE $\cos\theta$

(4) pE $\sin\theta$, -2pE $\cos\theta$

Q.5 An electric dipole when placed in a uniform electric field E will have minimum potential energy,, if the positive direction of dipole moment makes the following angle with E

 $(1) \pi$

 $(2) \pi / 2$

(3) Zero

 $(4) 3\pi/2$

Q.6 An electric dipole consisting of two opposite charges of 2×10^{-6} C each separated by a distance of 3 cm is placed in an electric field of 2×10^{5} N/C. The maximum torque on the dipole will be

(1) $12 \times 10^{-1} \text{ Nm}$

(2) 12×10^{-3} Nm

 $(3) 24 \times 10^{-1} \text{ Nm}$

(4) $24 \times 10^{-3} \text{ Nm}$

Q.7 A positive point charge Q is kept (as shown in the figure) inside a neutral conducting shell whose centre is at C. An external uniform electric field E is applied. Then:

- (1) Force on Q due to E is zero
- (2) Net force on Q is zero
- (3) Net force acting on Q and conducting shell considered as a system is zero
- (4) Net force acting on the shell due to E is zero.
- **Q.8** A conducting sphere of radius r has a charge. Then
 - (1) The charge is uniformly distributed over its surface, if there is an external electric field.
 - (2) Distribution of charge over its surface will be non-uniform if no external electric field exist in space.
 - (3) Electric field strength inside the sphere will be equal to zero only when no external electric field exists.
 - (4) Potential at every point of the sphere must be same

ANSWER KEY

PRACTICE SECTION-01

Que.	1	2	3	4	5	6	7	8	9	10
Ans:	4	2	4	3	1	3	4	1	2	1

PRACTICE SECTION-02

Que.	1	2	3	4	5	6	7	8	9	10
Ans:	1	2	3	1	4	1	2	1	2	3

PRACTICE SECTION-03

Que.	1	2	3	4	5	6	7	8
Ans:	4	615	3	3	3	2	4	4

rusted Learning Plain

* KHAN SIR 3*

